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INTRODUCTION 
  

The estimation of HTI anisotropy has proved useful to predict 

fractures (Hunt et al., 2010) and horizontal stress (Gray, 

2010). One proven method to predict HTI anisotropy is 

azimuthal AVO.  Rüger (2002) derived a linearized 

approximation to the Zoeppritz equation for HTI anisotropy.  

The near offset approximation of this is similar to the two-

term Shuey’s AVO equation with two extra parameters, the 

anisotropic gradient and the symmetry plane.  For fractured 

media, the anisotropic gradient is often claimed to be 

proportional to crack density while the isotropy plane is 

thought to be the strike of the fractures.  There are a number of 

assumptions and limitations with this theory.  First, the 

derivation assumes an isotropic half-space over an anisotropic 

half-space.  This assumption is restrictive as we would like to 

generalize the model to the case of a stack of anisotropic 

layers.  Secondly, as Goodway et al. (2006) argue, the near 

offset approximation is susceptible to theoretical error 

introduced by the far offset terms.  In addition, the anisotropic 

gradient is actually a function of Thomsen’s anisotropic 

parameters delta and gamma.  These two parameters may not 

be correlated in the same fashion to crack density giving rise 

to a potentially complex relation between crack density and 

the anisotropic gradient.  Furthermore, there is a 90 degree 

ambiguity associated in the estimatation of the isotropy plane.  

Lastly the azimuthal AVO inversion estimates only fractional 

band-limited elastic parameters.  Simultaneous prestack elastic 

inversion is one way to address these limitations.  Coulon et 

al. (2006) demonstrated a simultaneous prestack inversion to 

invert for isotropic elastic parameters using a simulated 

annealing algorithm.  This paper extends this approach to 

anisotropic media and by so doing addresses the limitations 

outlined above.  This paper first reviews the 3D, simultaneous 

isotropic elastic inversion of Coulon et al. (2006).  The 

isotropic simultaneous inversion uses a 1D convolutional 

modelling scheme where the reflectivity is modelled by the 

Zoeppritz equation or a linear approximation.  There is then a 

discussion about how the reflectivity modelling is generalized 

to the case of two orthorhombic half-spaces with arbitrary 

rotated symmetry planes following Schoenberg and Protázio 

(1992).  Even though the reflectivity modelling supports 

orthorhombic anisotropy, the more restricted case of HTI 

anisotropy is assumed to reduce the number of free parameters 

solved for.  Moreover, alternative parameterizations 

incorporating fractured rock physics, such as the penny-

shaped crack model (Hudson et al., 1981) or linear slip 

deformation theory (Schoenberg and Sayers, 1995) are 

explored.  After describing the calculation and 

parameterization of the anisotropic Zoeppritz equation, the 

generalization of the Coulon et al. (2006) method to 

anisotropic media is described.  The method is then 

demonstrated on both synthetic and real data. 

 

THEORY 

 
Coulon et al. (2006) describe a 3D multi-cube simultaneous 

isotropic elastic inversion.  The inversion is 3D in the sense 

that it solves for 3D volumes of elastic parameters and 

incorporates multi-trace lateral continuity constraints in the 

objective function. Nevertheless, the data are modelled using a 

1D convolutional approach.  The reflectivity is modelled using 

the full Zoeppritz equation or a linearized version thereof.  

The inputs to the algorithm are angle stacks and some initial 

layered elastic model defined in the time domain.  By using 

angle stacks, NMO stretch (Roy et al., 2005) and scaling 

issues can be addressed by varying the wavelet as a function 

of angle of incidence.  Further, ray tracing need not be 

performed, simplifying the forward modelling.  The initial 

model is iteratively perturbed using simulated annealing to 

find a global solution which minimizes the objective function.  

The objective function contains a data misfit and 

SUMMARY 
 

Seismic fracture prediction is becoming a more important 

exploration and development problem with the growing 

focus on unconventional reservoirs.  A non-linear 

inversion technique is presented to estimate layer-based 

fracture parameters and velocities based on azimuthal 

reflectivity data.  The earth model assumes a single set of 

vertical fractures per layer parameterized in terms of 

linear slip parameters - the normal and tangential fracture 

weaknesses - and fracture strike.  In addition, the 

background P-wave and S-wave impedances are 

estimated.   Either the exact Zoeppritz equation or some 

linearization thereof is used in a convolutional modelling 

scheme to estimate seismic amplitude data.  The inverse 

problem is solved in a nonlinear fashion using simulated 

annealing. 

 

The new technique has several advantages over 

performing azimuthal amplitude versus angle analysis 

(AVAz).  The reflectivity calculation used in the new 

technique is more theoretically correct, allowing for the 

symmetry plane to change as a function of layer.  The 90 

degree ambiguity in estimating the symmetry plane 

typical of the near offset approximation also disappears.  

Further, there is an improvement in the isotropic 

parameter estimates compared to isotropic inversion since 

the bias introduced by neglecting anisotropy has been 

removed by incorporating it into the forward model.   The 

azimuthal inversion is demonstrated on both synthetic 

and real seismic data. 
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regularization term.  The regularization term includes a 3D 

spatial continuity constraint to help attenuate the effects of 

random noise.  Further, since the algorithm is nonlinear, 

bounds may be easily incorporated.  The algorithm perturbs 

the layer P-wave velocity, Vp, S-wave velocity, Vs, and 

density, ρ.  These parameters can be perturbed independently 

or coupled via relationships such as the Gardner’s relation 

linking Vp and ρ.  In addition to the elastic parameters, the 

method also perturbs the time-thickness of the micro-layers so 

as to reduce the data misfit and enhance lateral coherence. 

 

Extension of simultaneous inversion: from isotropy to 

anisotropy 

 

The reflectivity calculation needs to be modified to 

incorporate HTI anisotropic media.  The HTI layered medium 

may be parameterized in terms of the layer time-thickness, P-

wave and S-wave impedances, density, and the Thomsen 

parameters δ, ε and γ, and the azimuth of the isotropy plane.  

This gives 8 free parameters per layer.  The HTI stiffness 

matrix is calculated from the elastic parameters defining each 

layer.  Next, the isotropy plane information is used to perform 

a Bond transformation (Winterstein, 1990).  This formulation 

allows the isotropy plane to vary as a function of layer or 

equivalently depth.  Schoenberg and Protázio (1992) solve for 

the Zoeppritz reflectivity using the rotated stiffness matrices as 

input.   The reflectivity is modelled for each interface resulting 

in a reflectivity series.  This reflectivity series is then 

convolved with a user-defined wavelet to create a model of the 

data for a particular azimuth and angle of incidence.  The 

simultaneous inversion methodology of Coulon et al. (2006) 

using simulated annealing extends naturally to the nonlinear 

forward modelling described above.    

 

Fracture parameters 

 

HTI anisotropy introduces four additional parameters 

compared to the four parameters of the isotropic inverse 

problem (i.e. three Thomsen parameters and the azimuth of the 

isotropy plane).  This raises the question whether the problem 

is well enough posed to obtain a reliable estimate of all these 

parameters.  It is possible to reduce the number of free 

parameters by using rock physics models.  The linear slip 

theory of Schoenberg and Sayers (1995) reduces the number 

of parameters describing the HTI stiffness matrix by one.  In 

this theory, the stiffness matrix is described by the isotropic 

parameters λ and µ, and the normal and tangential weaknesses, 

∆N and ∆T.  These weakness parameters describe how 

fractures weaken a background isotropic rock resulting in the 

density normalized stiffness matrix 
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where χ = λ/M = 1-2g, with M=λ+2µ and g equal to the 

square of the background S-wave to P-wave velocity ratio for 

the unfractured rock.  Both the normal and tangential 

weakness parameters are bound between 0 and 1. 

The introduction of fractures (positive normal and tangential 

weaknesses) reduces both the P-wave and SV-wave velocities 

in the symmetry plane (square root of A11 and A55 terms 

respectively).  In contrast the SV-wave velocity in the isotropy 

plane (square root of A44 term) is uninfluenced by the 

fractures.  Since χ is typically small, the P-wave velocity 

(square root of A33 term) in the isotropy plane is also largely 

uninfluenced.   

The penny-shaped crack model of Hudson et al. (1981) 

provides an alternative way to parameterize the model space in 

terms of ξ, the crack density, and ς, which is related to the 

fluid compressibility and the fracture aperture.  If the fluid is 

known a priori to be gas, such as in the Western Canadian 

Deep Basin, the unknown anisotropic parameters can be 

reduced to just the crack density and isotropy plane azimuth.  

The penny-shaped crack model creates a coupling between the 

normal and tangential weaknesses limiting the solution space.  

Interestingly the tangential weakness is only a function of 

crack density while the normal weakness is also a function of 

the fluid elastic properties.  These parameters complement the 

λρ, µρ methodology of Goodway et al. (1997).  

Consequently, the density normalized HTI stiffness matrix 

may be calculated by one of these methods for each layer.   

After the parameterization is performed for a particular layer 

and location, the stiffness matrix is rotated so that the isotropy 

plane is parallel to the fracture strike.  The Bond 

transformation allows the isotropy plane to vary as a function 

of layer.  The reflectivity, or reflection coefficient, is then 

calculated using the anisotropic Zoeppritz equation or 

linearization thereof.  The reflectivity is calculated for each 

azimuth, angle of incidence, and interface.   Accordingly, each 

azimuth and angle of incidence has a reflectivity series, which, 

when convolved with a wavelet, represents a synthetic seismic 

trace. 

Having extended the forward modelling to anisotropic media 

and developed suitable parameterizations, it is now possible to 

describe how the simultaneous inversion methodology of 

Coulon et al. (2006) is extended to anisotropic media.  The 

inputs to the algorithm are still angles stacks but now specified 

at a variety of different azimuths.   For example, in the real 

data example shown in the next section, four angle stacks are 

used and six azimuths (i.e. 15, 45, 75, 105, 135 and 165 

degrees) resulting in 24 input cubes for the inversion.  The 

input angle-azimuth stacks are created using a controlled 

amplitude processing flow outlined by Gray et al. (2009).  In 

addition to the isotropic initial layered model, the user must 

also specify the anisotropic model.  In the absence of 

knowledge, the initial model is typically assumed to be 

isotropic. 

The simultaneous inversion is similar to the isotropic 

inversion but with the incorporation of azimuthal effects.  The 

initial model is iteratively perturbed using a simulated 

annealing algorithm to minimize the objective function.  The 

data misfit portion of the objective function minimizes the 

differences between the anisotropic forward modelling 

described above and the angle-azimuth amplitude cubes.  The 

regularization term in the objective function once again 

optimizes 3D spatial continuity.  The perturbations may be 

applied to individual parameters or perturbations can be 

coupled via correlations between the parameters.  Both the 

linear slip theory and Hudson parameterizations couple 

Thomsen parameters and limit the solution space. 
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RESULTS 

 
The algorithm was tested on both real and synthetic data.  

Table 1 shows the parameters used to generate synthetic data 

for two tests that were performed.  Each layer is 50ms thick. 

Both the second and third layers are anisotropic with different 

symmetry planes.  This case breaks the assumptions made by 

the Rüger’s (2002) equation.  The data were forward modelled 

using the anisotropic Zoeppritz equation generating 

reflectivity for angle of incidence stacks at 10, 20, 30 and 40 

degrees and for azimuths at 0, 30, 60, 90, 120, and 150 

degrees.  These angle-azimuth stacks were then convolved 

with an 80Hz Ricker wavelet.  Data were generated for a 3D 

volume with laterally invariant parameters.  The noise-free 

synthetic seismic data were then inverted using the 

simultaneous anisotropic inversion.  Figure 3 shows the 

anisotropic parameter estimates displayed as probability 

distribution functions (PDF).  The ideal solution is highlighted 

with red lines.  The match is excellent with only a small 

amount of scatter about the ideal solution. The robustness to 

noise was also studied and provided good results. 

 

Layer 
Vp 

(m/s) 

Vs 

 (m/s) 

ρ  

(g/cm3) 
∆N ∆T 

Φsym 

(°) 

1 2647 1180 2.1 0 0 0 

2 

(HTI) 
3641 2010 2.4 0.3 0.1 

45 or 

135 

3 

(HTI) 
3641 2010 2.4 0.1 0.3 90 

4 2647 1180 2.1 0 0 0 

Table 1:  Input models used to generate the synthetic 

seismic data.  Two different models were generated: one 

with the second layer having a 45° symmetry axis Φsym and 

the other with the second layer having a 135° symmetry 

axis Φsym. 

 

Table 1 shows two different models for the second layer, one 

with a 45° symmetry axis and the other with a 135° symmetry 

axis.  This was done to test whether the algorithm resolved the 

90° symmetry plane ambiguity that the near offset Rüger’s 

(2002) equation has.  The inversion gave correct results in 

both cases. 

 

The inversion was applied on a 3D seismic dataset from 

North-Eastern British Columbia.  The corresponding estimates 

of the normal and tangential weaknesses ∆N and ∆T and the 

symmetry axis Φsym are shown in Figure 4.  Recall that in 

fractured media the tangential weakness is proportional to the 

crack density while the normal weakness is also a function of 

the crack aperture and fluid. The results are consistent with the 

knowledge in the field. 

 

CONCLUSIONS 
 

In summary, we have developed and demonstrated a new 3D 

simultaneous elastic inversion for HTI anisotropic media.  The 

method is an extension of the isotropic simultaneous inversion 

of Coulon et al. (2006).  The method addresses a number of 

theoretical shortcomings of azimuthal AVO.  Rather than 

producing fractional elastic parameter estimates, the inversion 

produces elastic parameter estimates.  The method is general 

enough to allow each layer to be HTI anisotropic with an 

arbitrary rotation for the symmetry axis.  The forward 

modelling calculates the reflectivity using the anisotropic 

Zoeppritz equation or some linearization of this and does not 

rely on some near offset approximation to enhance stability.   

Lastly, the 90° symmetry axis ambiguity has been removed.  

The algorithm was demonstrated on both synthetic and real 

data with good results. 
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Figure 3: Cross-plots showing the second layer parameter estimates for normal weakness ∆N, tangential weaknesses ∆T and 

the symmetry axis Φsym.  The 3D solution space is projected for the first model (45° symmetry axis) in the 2D spaces a) (∆T, 

∆N) and b) (∆N, Φsym) and for the second model (135° symmetry axis) in the 2D spaces c) (∆T, ∆N) and d) (∆N, Φsym). 

 

 

 
Figure 4: The estimates of the normal weakness ∆N (top left), tangential weaknesses ∆T (top right) and the symmetry axis Φsym 

(bottom right) for the real seismic data. 


