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INTRODUCTION 
  

Joint inversion of different geophysical data sets has recently 

received considerable attention. Different geophysical 

methods are sensitive to different physical properties and their 

variations on different scales, and joint inversion provides a 

way to combine these complementary information contained 

in each data set by integrating all the geophysical data into a 

single inversion scheme. The integration is achieved by 

requiring the resulting physical property models to honour all 

the data simultaneously (Vozoff and Jupp, 1975).  

 

One important consideration with joint inversion strategy is 

that one needs to find a reasonable relationship between 

different models so that they can complement each other. This 

relationship could be some empirical relationship between 

different physical properties, some correlation measure from 

statistics (Lelievre et al., 2010), or some structural similarity 

measure between models of different physical properties 

(Haber and Oldenburg, 1997; Gallardo and Meju, 2003). In 

this study, we consider the empirical petrophysical 

relationship between physical properties, and propose a new 

inversion method that can effectively build this information 

into inversion by means of fuzzy c-means (FCM) clustering 

technique. This new method is also effective when only partial 

petrophysical information is available. 

 

Generally, different lithologies have distinct ranges of physical 

properties as well as unique relationships among them. 

Inference about the subsurface lithology can then be made by 

grouping physical property values obtained from geophysical 

inversions into several clusters on the basis of their 

"distances" from each other (Paasche et al., 2006). FCM 

clustering technique is a powerful tool to explore the 

similarity between data (e.g. physical property values in our 

study) and classify the data under consideration into clusters 

(i.e. lithologies in this study) (Bezdek, 1981; Duda et al., 

2000). Therefore, we also use the FCM clustering to 

differentiate between different lithological regions. 

 

In the following, we begin with a brief introduction of the 

FCM clustering algorithm and the formulation of the joint 

inverse problem. We then demonstrate this new method using 

synthetic joint inversion of gravity and seismic traveltimes. 

 

METHODOLOGY 

 
Fuzzy c-means (FCM) clustering algorithm 

 

FCM clustering algorithm is an unsupervised clustering 

method that can organize data into groups based on 

similarities between data entries (Bezdek, 1981; Duda et al., 

2000). Mathematically, FCM clustering algorithm can be 

expressed as the minimization of the following objective 

function: 
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where N is the number of model cells, C is the number of 

clusters, yj is the jth data entry (e.g. physical parameter set at 

the jth cell in our study), and vk is the center of the kth cluster. 

ujk is the membership function that measures the degree to 

which the jth data entry belongs to kth cluster. The parameter, 

q, also known as fuzzification parameter, controls the degree 

of ’fuzziness’ of the resulting membership functions, and 

satisfies q ≥ 1.0. In this study, we set q = 2.0, which is widely 

accepted as a good choice (Hathaway and Bezdek, 2001). 

SUMMARY 
 

Multiple geophysical data collected over the same area 

but based on fundamentally different physics usually 

contain complementary information about the subsurface. 

Joint inversion combines the complementary information 

by integrating all the geophysical data into a single 

inversion scheme. Thus, models resulting from joint 

inversion are more likely to represent the subsurface 

better than models derived from a single type of data. In 

this study, we consider joint inversion of seismic 

traveltimes and gravity data, and present a new joint 

inversion algorithm that uses petrophysical information 

as constraints. Using a synthetic example, we show that 

this new method can effectively build the available 

petrophysical information into inversion and improve the 

definition of both structure and physical properties. We 

also show that this method can deal with the situation 

where only partial petrophysical information about the 

subsurface is available. An important component of our 

method is applying fuzzy c-means (FCM) clustering 

algorithm to the recovered physical property distribution 

to generate a lithology map that is consistent with both 

the observed geophysical data and the a priori 

petrophysical information. 
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Throughout this paper, we assume the total number of 

clusters, C, is known. We can use any derivative based method 

to minimize the objective function (1) with respect to the 

cluster centers, vk, and the membership functions, ujk. 

 

In our study, we use the FCM clustering technique to 

incorporate petrophysical information into joint inversion of 

crosshole seismic traveltimes and gravity data, and therefore, 

to encourage the recovered slowness and density distributions 

to follow the a priori petrophysical information. After 

completing the inversions, we use FCM clustering method to 

differentiate between different rock units. 

 

Formulation of inverse problems with petrophysical 

constraints 

 

The area under investigation is divided into cells, each having 

a constant density contrast and seismic slowness to be 

recovered. In the following, m1 is the model vector containing 

the slowness values, and m2 the density model vector. The 

crosshole seismic traveltimes are denoted by d1, and gravity 

data d2. 

 

The joint inversion of seismic traveltimes and gravity data is 

then formulated as an optimization problem that minimizes an 

objective function 
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The two φd terms quantify how well the observed data can be 

reproduced by inverted models. φm1 and φm2 measure the 

amount of structure in the two inverted models. Regularization 

parameters β1 and β2 balance between data misfit term and 

model structure term. Constants λ and η are determined by 

numerical experimentation. 

 

In equation (2), yj = [m1j,m2j]
T represents the slowness and 

density contrast in the jth cell. vk = [v1k ,v2k]
T is the center for 

the kth cluster estimated by FCM algorithm. tk = [t1k ,t2k]
T 

represents a possible pair of velocity and density value 

determined a priori from rock sample measurements. In this 

study, we consider the slowness and density as discrete 

random variables, and thus, their joint distribution is 

expressed in equation (2) as tk. The last term measures the 

distance between cluster centers updated by FCM algorithm, 

vk, and target cluster centers determined from a priori 

petrophysics, tk. One advantage of this strategy is that it does 

not compromise the well-behaved convergence of FCM 

algorithm, while at the same time, guides the search for cluster 

centers to the desired locations based on a priori petrophysical 

information. 

 

As mentioned in the Introduction, this new inversion 

algorithm can deal with the situation where we only have 

partial petrophysical knowledge about the subsurface. For 

example, assume that there are three different rock units in the 

subsurface, and we have petrophysical information for two of 

them from measurements on rock samples. In this case, C = 3, 

and the last term in equation (2) would become: 
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In other words, cluster centers, v1 and v2, for which we have 

petrophysical information available, are estimated by both 

FCM algorithm (i.e.∑ =
−

N

j kj

q

jk vyu
1

2

2

, k=1, 2) and the 

petrophysical constraints (i.e.
2

2kk tv − , k=1, 2).  However, 

the center for the third cluster, v3, is updated only by FCM 

algorithm by turning off the third term,
2

233 tv − , since no 

petrophysical information about the third rock type exists. 

 

 

SYNTHETIC EXAMPLES 
 

Joint inversion with complete petrophysical information  

 

Figure 1 shows the model set up. The model section extends 

900 m horizontally and 600 m in depth. The model region is 

discretized into 864 25m×25m cells. The background slowness 

is 0.5 s/km. There are two slowness anomalies with slowness 

0.2 s/km above and below the background slowness value. The 

two anomalous density regions have the same density contrast 

of 0.4 g/cm3. We assume there is a vertical borehole on each 

end of the model region and we position seismic transmitters 

evenly in one borehole and receivers in the other (Figure 1). 

To simplify the problem, we calculate the traveltimes at each 

receiver using straight-ray tracing. We calculate the gravity 

response every 20m on the surface and every 40m in the two 

boreholes. Independent Gaussian noise is added to simulate 

observed data. 

 

Figure 1. Slowness model and geometry of the synthetic 

crosshole seismic experiment. Red triangles and circles 

mark the positions of transmitters and receivers. The 

corresponding density model has the same structure but an 

identical density contrast in the two blocks (0.4 g/cm3) in a 

zero background. 

 

Figure 2 shows the joint distribution of slowness and density.  

The three distinct points in the crossplot of slowness versus 

density indicate the presence of three different lithologies. We 

assume this petrophysical information is available a priori 

from rock sample measurements. We now consider jointly 

inverting seismic traveltimes and gravity data by minimizing 

function (2) with tk being equal to (0, 0.5)T, (0.4, 0.3)T and 

(0.4, 0.7)T for k = 1, 2, 3, respectively. In other words, the a 

priori petrophysical information is built into inversion by 

letting tk assume those possible values determined from rock 

physics, as shown in Figure 2. 

 

Figure 3 shows the slowness model recovered from joint 

inversion, and Figure 4 shows the recovered slowness model 

with only seismic traveltime data. We observe in Figure 4 that 

there are two obvious slowness anomalies, but we also 

observe serious spurious features in the model. The jointly 

inverted slowness model in Figure 3, however, shows fewer 

spurious features, and the spatial extents of the slowness 

anomalies are much better resolved than in Figure 4. 
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Figure 2. Joint distribution of slowness and density 

 
Figure 3. Slowness model recovered from joint inversion. 

 

Figure 4. Slowness model recovered without petrophysical 

constraints. 
 

Figure 5 and 6 show the density model recovered from single 

inversion and joint inversion, respectively. The density model 

shown in Figure 5 roughly indicates where the density 

anomalies are. But the inverted density anomalies are 

characterized by smooth features, especially smeared 

boundaries. Furthermore, the recovered density values are 

lower than the true value of 0.4 g/cm3. In contrast, the 

locations and the shape of the recovered density anomalies in 

Figure 6 are better resolved and more consistent with the true 

anomalies. Also, the inverted density values at these two 

locations are nearly 0.4 g/cm3, which is equal to the true value. 

 

Figure 7 shows the joint distribution of slowness and density 

values recovered from joint inversion. The three distinct 

clusters, enclosed by the red ellipses, indicate the presence of 

three different lithologies in the subsurface. As comparison, 

Figure 8 shows the joint distribution of slowness and density 

values estimated from separate inversions. It is obvious that 

incorporation of additional petrophysical information into 

geophysical inversion helps differentiate between different 

rock units. This conclusion is further confirmed by lithology 

differentiation result (Figure 9) obtained by applying the FCM 

clustering algorithm to the slowness and density models from 

joint inversion. Three different colours indicate three different 

rock types in this cross section. It is clear that the three 

different lithologies are identified at correct locations and with 

a reasonable definition of boundaries. 

 

 

Figure 5: Density model recovered from gravity inversion. 

 

 

Figure 6: Density model recovered from joint inversion. 

 
Figure 7. Joint distribution of recovered slowness and 

density values. The red stars show the distribution of true 

slowness and density values.  

 

Figure 8. Joint distribution of slowness and density values 

recovered from separate inversions of seismic traveltime 

and gravity data. The red stars show the distribution of 

true slowness and density values. 

 

Figure 9. Lithological differentiation result by applying 

FCM clustering algorithm to jointly inverted models. 
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Joint inversion with partial petrophysical information 

 

We next assume that we have petrophysical information about 

two out of three rock types in this area. The petrophysical 

information we have in this case is summarized in Figure 10. 

 
Figure 10: Joint distribution of slowness and density for 

two of the three rocks. 

 

We now use this partial petrophysical information to constrain 

joint inversion of seismic traveltimes and gravity data. For 

brevity, the slowness and density models recovered from joint 

inversion with incomplete petrophysical data are not shown 

here. However, the joint distribution of the recovered 

slowness and density values (Figure 11) is a good indication 

of our success in using partial petrophysical information to 

better constrain geophysical models.  

 
Figure 11. Joint distribution of slowness and density values 

recovered from joint inversion with partial petrophysical 

information. 

 

Figure 12 shows the lithology differentiation result. It is 

interesting to notice that even if no information about the third 

rock type is incorporated into inversion, we can still identify 

that rock at the correct location and with good boundaries. 

The reason is that incorporation of petrophysical information 

about the other two rock types improves the characterization 

of these two rocks, and consequently, the third rock type is 

constrained indirectly. 

 

CONCLUSIONS 
 

Petrophysical information is often available from physical 

property measurements on rock samples. In this paper, we 

present a new inversion algorithm that can effectively build 

the a priori petrophysical information into joint inversions. 

We demonstrate through a synthetic example that 

incorporation of such information into joint inversion of 

multiple geophysical data can greatly improve the inverted 

images. The inverted models honour both the observed 

geophysical data and the a priori petrophysical information. 

 

One advantage of our proposed joint inversion method is that 

it can deal with the situation where only partial petrophysical 

information about the area is available. We have demonstrated 

that the inverted models recovered from joint inversion 

constrained by only partial petrophysical information 

represent the subsurface structure better than models from 

single data type inversion. 

 

The inverted models obtained from the proposed joint 

inversion algorithm are further processed by FCM clustering 

algorithm to automatically differentiate different lithologies 

present in the subsurface. Numerical results show that the 

locations and shapes of different lithologies can be correctly 

identified by applying FCM clustering algorithm.  

 

Figure 12: Lithology map resulting from FCM clustering. 
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