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SUMMARY

A new numerical approach, called the “sub-domain
Chebyshev spectral method”, has been developed to
calculate differentiations in a curved coordinate system,
which may be employed for 2D/3D geophysical forward
modelling. The new method utilises non-linear
transformations defined by the free-surface topography
and subsurface interfaces and incorporates cubic-spline
interpolations to convert the global domain into
subdomains, and applies Chebyshev points in the model
discretisation and computation of the spatial derivatives.
Such effort makes the numerical differentiations have
“spectral accuracy” inside the subdomains whose
boundaries match the free-surface topography and
subsurface interfaces.

2D and 3D synthetic experiments have been performed
with two geological models, both having different free-
surface topographies and sub-surface interfaces. The
computational errors of the new approach were compared
with traditional finite-difference schemes, and the results
show that the sub-domain Chebyshev spectral method is
superior to traditional finite-difference method in its
accuracy and applicable for all of the geophysical forward
modelling problems.

Key words: geophysical forward modelling, numerical
differentiation, Chebyshev spectral method, governing
equation, numerical solution.

INTRODUCTION

Mathematically, geophysical forward modelling seeks the
numerical solution of a partial differential equation (called the
governing equation), subject to a Dirichlet or Neumann
boundary condition. The simplest traditional solver is the
finite difference method that approximates partial derivatives
in the governing equation by finite difference formulae, i.e.
the fourth-order scheme and staggered grid approach, both of
which are widely used for seismic wave modelling and
numerical simulations of geo-electromagnetic fields (see
examples, Festa & Vilotte, 2005; Streich 2009). However, due
to employing a regular grid, finite difference method suffers
from arbitrary free-surface topography and subsurface
interfaces. It is limited to geological models whose free-
surface topography and subsurface interfaces are described by
stepwise curves or stepwise blocks. Though one may apply a
curved coordinate system, it often requires high-order analytic
functions to define the free-surface topography and subsurface
interfaces.

It is well known that the spectral method is a modern
numerical differentiation technique superior to the traditional
finite difference method because of the so-called spectral
accuracy. It becomes a popular high accurate solver for
various partial differential equations problems (Trefethen,
2000). However, the most disadvantageous aspect of the
spectral method for geophysical forward modelling is the high
consumption of computer memory and CPU time because
standard spectral method employs global domain samples in
the calculation of derivatives. This yields to a fully filling-in
matrix that makes expensive computations in solving
processing, particularly for a large 3D geological model.

To overcome this problem, we developed a new scheme of the
spectral method, called “subdomain Chebyshev spectral
method”, in which the global domain is divided into non-
overlapping subdomains, and Chebyshev points are applied to
discretise the subdomains of geological model and calculate
the spatial derivatives of governing equations. Such manner
leads to a sparse matrix and have the spectral accuracy of
numerical differentiations inside the subdomains. In addition,
a non-linear coordinate transform and cubic spline
interpolations are introduced in the subdomains, so that the
Chebyshev-pointed grid automatically matches the free-
surface topography and subsurface interfaces. 2D and 3D
synthetic experiments show that the new method obtains better
convergences of numerical differentiations than traditional
finite difference method.

MODELLING SCHEME

2D/3D Geophysical forward modelling solves the governing
equation as in the following form:

L(m,ax],aw )W=s(r,r,) rr,eQ. (@

where L(.) is the linear differential operator that depends on
the model vector m and partial derivatives Ox and Oxx. The
vector V={V,} (a=x,y,z) may be the displacement vector u in
seismic wave modelling, or electromagnetic field E or H in
geo-electromagnetic  simulation. The model vector m
comprises the density p and elastic moduli ¢jjq: m={p,cjjq} for
seismic modelling, or electric permittivity ¢, magnetic
permeability p; and conductivity oy m={gjy, p; oy} for
electromagnetic simulation. The right-hand side vector s(.) is
the source vector located at r, in the domain Q.
In order to match the free-surface topography, one often
employs a curved coordinates system given by

x =x(&). (,k=123). 2
According to the chain law, the derivatives in eq.(1) have the
following forms:

0.V, =0.V,0 & 3)
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Here the summation convention of the repeated subscripts k
and 1. has been applied. Equations (3) and (4) may be
approximated by

oV, ~D.V,.. 9, V,~D_V, Q)
D, =D& D, (©)

k

D = £ . £ . £ . 7
ij Dyﬁék ijél kaéu +D>ng§k Dék’ @)
where Deg and Dz, are numerical differentiation operators, i.e.

the 1Ist and 2nd finite-difference matrices; %k and Va are

vectors whose components are the samples of & and V, at the
points defined by Dx; and Dxx;, which can be obtained from
eq. (2).

Substituting eq. (5) for eq. (1) and applying the governing
equation to each point r €2, one obtains 3N linear equations

L(m,, D", D) )V® =s(r,.r), k=12..N), (8)

which involves 3N unknowns of y® :(VX“‘),V;“,V;")).
Solving eq. (8) subject to a Dirichlet or Neumann boundary
condition, one obtains the numerical solutions of V® .
Therefore, the key step of the geophysical forward modelling
is to find accurate numerical differentiation operators
DYDY}

SUBDOMAIN SPECTRAL METHOD

As an example here, a 3D case is presented, from which one
can easily obtains the 2D case by just removing the y-
coordinate. The domain Q is subdivided into subdomains
Qij=lxixilx [yl x[zc(xy),zdx.y)], for which eq. (2) is
replaced with the following
x=Ax&E/2+ %,
y=Aymn/2+y;,
z=Az(x,y)s/2+7(X. y),

(©))

where {Ax;, Ay, Az(xy)} and {X.¥,.2,(x,y)} are the

lengths and middle points of the subdomains, respectively.
The function Az(x,y) must be differentiable in the (x,y)-plane
and therefore approximated by cubic spline interpolations
(Helmuth, 2006). Applying eq. (9) and the Chebyshev
differentiation matrix based on the points in the subdomain
(Trefethen, 2000):

£, —cos %)z (12a<N,)
=cos 7, 1<a< R
“ N. -1 ¢

¢ (10

N, -p
nﬁ:cos(N 1)7[, (ISﬁSNq),

n
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the operators Dx;, Dxix;, De and De,s are obtained, as well as
ﬁx and p . Here, Ng, N, and N, are the numbers of points

in the three directions of the subdomain, and they define the
lengths (points) of the differentiation operators.

Apparently, such numerical differentiation operators have the
spectral accuracies at the points inside subdomains, but
cannot be applied to the points on subdomain boundaries
because of possible multiple values. However, for the
boundary points, the operators may be replaced with
differentiations of Lagrange interpolations defined by the

neighbours of the Chebyshev points. Consequently, we have
two versions of the differentiation operators ﬁ)& and ﬁv s

ie. (M D _ MmO o D® pP® 1, ding t

ie. (DD, }={D{. D }or {(D¥ D }.according to

the two types of points: inside points (I) and boundary points

(B). The operators {p P« yare the standard Chebyshev
% 7 TUXX

differentiation matrices and (D® P} become Lagrange
X 2 XX

differentiation matrix but use the neighbour Chebyshev
points. However, no matter either (D, DWy or

(D®, D®y is substituted into eq. (5), it will be called the
X XX

“subdomain Chebyshev spectral method”, because both are
based on the Chebyshev points in the subdomains. The only
difference is the spatial arrangements of the Chebyshev
points for the differentiation operators.

Note that the second order differentiation operator D, may

be calculated by
D, =MD, +D D)/2 an

instead of eq. (7). This equation shows that the high order
derivatives Dx‘ Ek are not necessary.
X,

As mentioned in the previous section, replacing {ﬁ‘x“’ ﬁs i ')
: X
and {(D®, D®) with the finite difference operators, the
X ? X Xj

geophysical forward modelling scheme becomes the
traditional finite difference method that has the same form of
eq. (8). So, a comparison of the subdomain Chebyshev
spectral method with the finite difference approach can be
easily made.

NUMERICAL EXPERIMENTS

To investigate the accuracy of the subdomain Chebyshev
spectral method and compare it with some other methods, i.e.
analytic and finite difference methods, two synthetic models
were designed. Figure 1 gives the models involving 2D and
3D cases. The following testing functions:

2D u(x,z) = cos(27x/85)cos(27z/95), (12)
3D: u(x,y,z) =sin(27x/85) cos(2zy/85)sin(27z/95), (13)
were chosen as field quantities for the two models, both of

which have different free-surface topography and subsurface
interfaces. Differentiating eq. (12) and (13), one may obtains

the analytic derivatives OxU and OxxU, which can be used as
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Figure 1. Synthetic models for subdomain Chebyshev
differentiation experiments.

the true solutions of the subdomain Chebyshev spectral
method and any other numerical approach, i.e. finite
difference approach. Five numerical differentiation schemes
were implemented, which include two subdomain Chebyshev
spectral methods (SSP1 and SSP2) and three finite difference



approaches (FDMO, FDM1, FDM2). Here, the number “0”

stands for the curved coordinate system of the Lagrange

interpolations for Az(x,y). The integers “1” and ‘“2” represent

the high order differentiation operator ﬁxix_ computed by eq.
)

(7) and (11) respectively, and incorporated the cubic spline
interpolations for Az(x,y). Each scheme was performed with
different lengths (starting from 3 to 10 points) of the
differentiation operators. Figure 2 gives the 2D results
calculated by the seven-point subdomain Chebyshev spectral
method, and Figure 3 shows the convergence curves of the
averaged absolute relative errors of the five schemes.
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Figure 2. 2D subdomain Chebyshev differentiation results
and the absolute relative errors.
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Figure 3. Convergence curves of the averaged absolutely
relative errors of five differentiation schemes.

Figure 4, 5 and 6 are the 3D results obtained with the seven-
point subdomain Chebyshev spectral method. Figure 7, 8 and
9 are the averaged absolute relative errors of the results
shown in Figure 4, 5 and 6. From the 2D and 3D results, one
can see that the two subdomain Chebyshev spectral methods
(SSP1 and SSP2) yield to accurate derivatives whose
maximum relative errors are less than 0.28%, and much
better than the finite difference methods when the lengths of
the differentiation operators are larger than six points.
Accordingly, the subdomain Chebyshev spectral method is a
new solver for geophysical forward modelling problem.
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Figure 4. The 3D first derivatives calculated by the
subdomain Chebyshev spectral method.
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Figure 5. The 3D secondary derivatives obtained by the
subdomain Chebyshev spectral method.

e u -
e Foe i
T a3
Z 383w

- -

" .
Za "
an n

w: -

% %

- -
— ™
Em -
o™ "

s -

. -
Sw "
N o ™

- .‘

™ -
T ool
Eu 2803 1

" e

w0 1203 3
B -
Tw "
b n »

n‘i .C

O T
X-distance (km)

“ » s m w
X-distance (km)

Figure 6. The 3D secondary mixed derivatives calculated
by subdomain Chebyshev spectral method.
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Figure 7. Absolute relative errors of the first derivatives
shown in Figure.4.
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Figure 8. Absolute relative errors of the secondary
derivatives shown in Figure 5.
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CONCLUSIONS

A 2D/3D subdomain Chebyshev spectral method has been
developed for numerical differentiations, which may be
employed in solving the governing equation of the
geophysical forward modelling. Synthetic experiments show
that the subdomain Chebyshev spectral method is superior to
the finite difference approach in the accuracy of
approximation of field quantity derivatives. Particularly, the
scheme SSP2 does not need to calculate the high-order
derivatives of the transformed coordinates and the high order
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differentiation operators are obtained by multiplications of
the first order differentiation operators. The subdomain
Chebyshev spectral schemes, SSP1 and SSP2, may be
applicable for geophysical forward modelling in a complex
geological model.
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Figure 10. Convergence curves of four numerical
differentiation schemes.
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