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INTRODUCTION 
  

Mathematically, geophysical forward modelling seeks the 

numerical solution of a partial differential equation (called the 

governing equation), subject to a Dirichlet or Neumann 

boundary condition. The simplest traditional solver is the 

finite difference method that approximates partial derivatives 

in the governing equation by finite difference formulae, i.e. 

the fourth-order scheme and staggered grid approach, both of 

which are widely used for seismic wave modelling and 

numerical simulations of geo-electromagnetic fields (see 

examples, Festa & Vilotte, 2005; Streich 2009). However, due 

to employing a regular grid, finite difference method suffers 

from arbitrary free-surface topography and subsurface 

interfaces. It is limited to geological models whose free-

surface topography and subsurface interfaces are described by 

stepwise curves or stepwise blocks. Though one may apply a 

curved coordinate system, it often requires high-order analytic 

functions to define the free-surface topography and subsurface 

interfaces. 

It is well known that the spectral method is a modern 

numerical differentiation technique superior to the traditional 

finite difference method because of the so-called spectral 

accuracy. It becomes a popular high accurate solver for 

various partial differential equations problems (Trefethen, 

2000). However, the most disadvantageous aspect of the 

spectral method for geophysical forward modelling is the high 

consumption of computer memory and CPU time because 

standard spectral method employs global domain samples in 

the calculation of derivatives. This yields to a fully filling-in 

matrix that makes expensive computations in solving 

processing, particularly for a large 3D geological model. 

To overcome this problem, we developed a new scheme of the 

spectral method, called “subdomain Chebyshev spectral 
method”, in which the global domain is divided into non-

overlapping subdomains, and Chebyshev points are applied to 

discretise the subdomains of geological model and calculate 

the spatial derivatives of governing equations. Such manner 

leads to a sparse matrix and have the spectral accuracy of 

numerical differentiations inside the subdomains. In addition, 

a non-linear coordinate transform and cubic spline 

interpolations are introduced in the subdomains, so that the 

Chebyshev-pointed grid automatically matches the free-

surface topography and subsurface interfaces. 2D and 3D 

synthetic experiments show that the new method obtains better 

convergences of numerical differentiations than traditional 

finite difference method. 

 

MODELLING SCHEME 

 
2D/3D Geophysical forward modelling solves the governing 

equation as in the following form:  

),(),,( sxxx jii
rrsVmL  , srr, ,   (1) 

where L(.) is the linear differential operator that depends on 

the model vector m and partial derivatives xi and xixj. The 

vector V={V} (=x,y,z) may be the displacement vector u in 

seismic wave modelling, or electromagnetic field E or H in 

geo-electromagnetic simulation. The model vector m 

comprises the density  and elastic moduli cijkl: m={,cijkl} for 

seismic modelling, or electric permittivity ij, magnetic 

permeability ij and conductivity ij: m={ij, ij, ij} for 

electromagnetic simulation. The right-hand side vector s(.) is 

the source vector located at rs in the domain . 

In order to match the free-surface topography, one often 

employs a curved coordinates system given by 

).3,2,1,(),(  kixx kii               (2) 

According to the chain law, the derivatives in eq.(1) have the 

following forms: 

kxx iki
VV   ,                     (3) 

kxxlxkxxx jikjlkiji
VVV    .  (4) 

SUMMARY 
 

A new numerical approach, called the “sub-domain 

Chebyshev spectral method”, has been developed to 

calculate differentiations in a curved coordinate system, 

which may be employed for 2D/3D geophysical forward 

modelling. The new method utilises non-linear 

transformations defined by the free-surface topography 

and subsurface interfaces and incorporates cubic-spline 

interpolations to convert the global domain into 

subdomains, and applies Chebyshev points in the model 

discretisation and computation of the spatial derivatives. 

Such effort makes the numerical differentiations have 

“spectral accuracy” inside the subdomains whose 

boundaries match the free-surface topography and 

subsurface interfaces. 

2D and 3D synthetic experiments have been performed 

with two geological models, both having different free-

surface topographies and sub-surface interfaces. The 

computational errors of the new approach were compared 

with traditional finite-difference schemes, and the results 

show that the sub-domain Chebyshev spectral method is 

superior to traditional finite-difference method in its 

accuracy and applicable for all of the geophysical forward 

modelling problems. 
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Here the summation convention of the repeated subscripts k 

and l. has been applied. Equations (3) and (4) may be 

approximated by 

, VD
ixxV  ,  

 VD
i jji xxxx V  ,       (5) 

,
kii kxx DȟDD                          (6) 

,
kjilkjiji kxxlxkxxx  DȟDDȟDȟDD    (7) 

where Dk and Dkll are numerical differentiation operators, i.e. 

the 1st and 2nd finite-difference matrices; 
kȟ


and 

V are 

vectors whose components are the samples of k and V at the 

points defined by Dxi and Dxixj, which can be obtained from 

eq. (2). 

Substituting eq. (5) for eq. (1) and applying the governing 

equation to each point rk, one obtains 3N linear equations 
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which involves 3N unknowns of ).,,( )()()( k(k(

y

k

x

k

zVVVV   

Solving eq. (8) subject to a Dirichlet or Neumann boundary 

condition, one obtains the numerical solutions of )(kV . 

Therefore, the key step of the geophysical forward modelling 

is to find accurate numerical differentiation operators 

},{ )()( k

xx

k

x jii
DD . 

 

SUBDOMAIN SPECTRAL METHOD 

 
As an example here, a 3D case is presented, from which one 

can easily obtains the 2D case by just removing the y-

coordinate. The domain  is subdivided into subdomains 

ijk=[xi-1,xi] [yj-1,yj][zk-1(x,y),zk(x,y)], for which eq. (2) is 

replaced with the following 
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where {xi, yj, zk(x,y)} and )},(,,{ yxzyx kji
are the 

lengths and middle points of the subdomains, respectively. 

The function zk(x,y) must be differentiable in the (x,y)-plane 

and therefore approximated by cubic spline interpolations 

(Helmuth, 2006). Applying eq. (9) and the Chebyshev 

differentiation matrix based on the points in the subdomain 

(Trefethen, 2000): 
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the operators Dxi, Dxixj, Dk and Dkl  are obtained, as well as 

ixD and 
ji xxD . Here, N, N and N are the numbers of points 

in the three directions of the subdomain, and they define the 

lengths (points) of the differentiation operators. 

Apparently, such numerical differentiation operators have the 

spectral accuracies at the points inside subdomains, but 

cannot be applied to the points on subdomain boundaries 

because of possible multiple values. However, for the 

boundary points, the operators may be replaced with 

differentiations of Lagrange interpolations defined by the 

neighbours of the Chebyshev points. Consequently, we have 

two versions of the differentiation operators 
ixD and 

jixxD , 

i.e. },{},{ )()( I

xx

I

xxxx jiijii
DDDD  or },{ )()( B

xx

B

x jii
DD , according to 

the two types of points: inside points (I) and boundary points 

(B). The operators },{ )(()( I

xx

I

x jii
DD are the standard Chebyshev 

differentiation matrices and },{ )(()( B

xx

B

x jii
DD  become Lagrange 

differentiation matrix but use the neighbour Chebyshev 

points. However, no matter either },{ )(()( I

xx

I

x jii
DD or 

},{ )(()( B

xx

B

x jii
DD  is substituted into eq. (5), it will be called the 

“subdomain Chebyshev spectral method”, because both are 

based on the Chebyshev points in the subdomains. The only 

difference is the spatial arrangements of the Chebyshev 

points for the differentiation operators. 

Note that the second order differentiation operator 
ji xxD may 

be calculated by 

,2/)(
ijjiji xxxxxx DDDDD           (11) 

instead of eq. (7). This equation shows that the high order 

derivatives 
kxx ji
ȟD  are not necessary. 

As mentioned in the previous section, replacing },{ )(()( I

xx

I

x jii
DD  

and },{ )(()( B

xx

B

x jii
DD  with the finite difference operators, the 

geophysical forward modelling scheme becomes the 

traditional finite difference method that has the same form of 

eq. (8). So, a comparison of the subdomain Chebyshev 

spectral method with the finite difference approach can be 

easily made. 

 

NUMERICAL EXPERIMENTS 
 

To investigate the accuracy of the subdomain Chebyshev 

spectral method and compare it with some other methods, i.e. 

analytic and finite difference methods, two synthetic models 

were designed. Figure 1 gives the models involving 2D and 

3D cases. The following testing functions: 

),95/2cos()85/2cos(),(:2 zxzxu D              (12) 

),95/2sin()85/2cos()85/2sin(),,(:3 zyxzyxu D  (13) 

were chosen as field quantities for the two models, both of 

which have different free-surface topography and subsurface 

interfaces. Differentiating eq. (12) and (13), one may obtains 

the analytic derivatives xiu and xixju, which can be used as 
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the true solutions of the subdomain Chebyshev spectral 

method and any other numerical approach, i.e. finite 

difference approach. Five numerical differentiation schemes 

were implemented, which include two subdomain Chebyshev 

spectral methods (SSP1 and SSP2) and three finite difference 

Figure 1. Synthetic models for subdomain Chebyshev 

differentiation experiments.  



 

 

 

approaches (FDM0, FDM1, FDM2). Here, the number “0” 
stands for the curved coordinate system of the Lagrange 

interpolations for zk(x,y). The integers “1” and “2” represent 
the high order differentiation operator 

ji xxD computed by eq. 

(7) and (11) respectively, and incorporated the cubic spline 

interpolations for zk(x,y). Each scheme was performed with 

different lengths (starting from 3 to 10 points) of the 

differentiation operators. Figure 2 gives the 2D results 

calculated by the seven-point subdomain Chebyshev spectral 

method, and Figure 3 shows the convergence curves of the 

averaged absolute relative errors of the five schemes. 
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Figure 2. 2D subdomain Chebyshev differentiation results 

and the absolute relative errors. 
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Figure 3. Convergence curves of the averaged absolutely 

relative errors of five differentiation schemes.  

 

Figure 4, 5 and 6 are the 3D results obtained with the seven-

point subdomain Chebyshev spectral method. Figure 7, 8 and 

9 are the averaged absolute relative errors of the results 

shown in Figure 4, 5 and 6. From the 2D and 3D results, one 

can see that the two subdomain Chebyshev spectral methods 

(SSP1 and SSP2) yield to accurate derivatives whose 

maximum relative errors are less than 0.28%, and much 

better than the finite difference methods when the lengths of 

the differentiation operators are larger than six points. 

Accordingly, the subdomain Chebyshev spectral method is a 

new solver for geophysical forward modelling problem. 
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Figure 4. The 3D first derivatives calculated by the 

subdomain Chebyshev spectral method. 
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Figure 5. The 3D secondary derivatives obtained by the 

subdomain Chebyshev spectral method. 
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Figure 6. The 3D secondary mixed derivatives calculated 

by subdomain Chebyshev spectral method.  
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Figure 7. Absolute relative errors of the first derivatives 

shown in Figure.4. 
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Figure 8. Absolute relative errors of the secondary 

derivatives shown in Figure 5. 
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Figure 9. Absolute relative errors of the secondary mixed 

derivatives shown in Figure 6. 

 

CONCLUSIONS 
 

A 2D/3D subdomain Chebyshev spectral method has been 

developed for numerical differentiations, which may be 

employed in solving the governing equation of the 

geophysical forward modelling. Synthetic experiments show 

that the subdomain Chebyshev spectral method is superior to 

the finite difference approach in the accuracy of 

approximation of field quantity derivatives. Particularly, the 

scheme SSP2 does not need to calculate the high-order 

derivatives of the transformed coordinates and the high order 

differentiation operators are obtained by multiplications of 

the first order differentiation operators. The subdomain 

Chebyshev spectral schemes, SSP1 and SSP2, may be 

applicable for geophysical forward modelling in a complex 

geological model. 
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Figure 10. Convergence curves of four numerical 

differentiation schemes. 
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