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INTRODUCTION 
  

Several airborne frequency-domain electromagnetic (FDEM) 

surveys have recently been acquired by the U.S. Geological 

survey to inform groundwater models by delineating the 

geometry of hydrogeologic structures in the subsurface (Ball 

et al., 2011; Smith et al., 2010).  While traditional ‘best-fit’ 

models derived from these data provide useful details about 

subsurface structures, they do not capture the full range of 

plausible solutions that are consistent with the measured data, 

often leading to incomplete or inaccurate interpretations.  A 

robust assessment of model uncertainty is a critical part of any 

parameter estimation problem (Tarantola and Valette, 1982).  

Understanding parameter uncertainty, non-uniqueness, and 

correlation is just as important as estimating parameter values 

themselves when interpreting the constraints on plausible 

solutions provided by a measured dataset.   

 

Recent applications of Bayesian Markov chain Monte Carlo 

(MCMC) methods to geophysical parameter estimation 

problems have incorporated a trans-dimensional aspect, 

wherein the number of unknown parameters is one of the 

unknowns (Malinverno, 2002; Sambridge et al., 2006; 

Hopcroft et al., 2007; Bodin and Sambridge, 2009).  The 

trans-dimensional approach provides substantial flexibility in 

model parameterization, and allows for natural parsimony by 

favouring solutions that fit the data with the fewest number of 

parameters.  Chosing the model parameterization with MCMC 

methods is an especially challenging issue when assessing 

heterogeneous distributions of geophysical properties in two- 

or three-dimensions, in that a balance must be obtained 

between forward model complexity and computational 

expense.  In an attempt to deal with this issue, Irving and 

Singha (2010) proposed a strategy where complex structures 

were assessed using a geostatistical facies-based 

parameterization. In their case, the underlying continuously 

varying subsurface model was approximated by a two-facies 

system of block pixels with constant geophysical properties 

within each facies, in order to significantly reduce 

dimensionality of the problem.  

 

Here, we adapt several existing MCMC approaches to address 

model assessment and uncertainty analysis of airborne 

frequency domain electromagnetic (FDEM) data.  For one-

dimensional (1D) soundings, a trans-dimensional MCMC 

algorithm is used to solve for the distribution of resistivity 

values at depth (Minsley, 2011).  Additionally, we incorporate 

flexibility in the algorithm to assess any of several optional 

parameters, including system elevation, the level of random 

noise in the data, and systematic instrument errors, all of 

which can alter the uncertainty in resistivity values with depth.  

For two-dimensional (2D) models, we adapt the geostatistical 

basis approach of Irving and Singha (2010).  Heterogeneous 

resistivity models are generated using a sequential simulation 

algorithm (Deutsch and Journel, 1997) that perturbs a smaller 

set of primary geostatistical parameters.  

 

METHODS AND RESULTS 
 

One-dimensional algorithm  

 

A trans-dimensional Bayesian MCMC algorithm for the 

assessment of individual FDEM soundings is presented in 

Minsley (2011), which builds on the work by Malinverno 

(2002).  In addition to generating realizations from the 
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posterior distribution of resistivity with depth, this algorithm 

is modified to also assess uncertainty in the system elevation, 

the level of random noise in the data, and systematic 

instrument errors.  Because of the computational expense 

involved with a comprehensive MCMC analysis, this 

algorithm is currently being utilized to assess uncertainty in 

several characteristic regions of a larger airborne survey. 

 

Figure 1 shows a general flowchart for the trans-dimensional 

MCMC algorithm for 1D soundings.  A layered earth model is 

initialized with the best-fitting half-space model, with an 

interface in the middle of the model (layers on both sides of 

the interface have the same resistivity).  A new resistivity 

model is then proposed in two steps:  (1) layer geometry is 

perturbed by adding a layer, deleting a layer, perturbing one 

layer interface depth, or leaving the interfaces unchanged, and 

(2) resistivity values within each new layer are perturbed, with 

variance proportional to the linearized posterior covariance of 

the current model (Minsley, 2011).  Next, any of the optional 

parameters describing the system or data errors can be 

updated.   

 

 

 

Figure 1.  Flowchart for trans-dimensional Bayesian 

MCMC algorithm applied to 1D soundings (top), with 

examples of resulting parameter values drawn from the 

posterior distribution (bottom). Optional steps are shaded 

in blue. 
 

Once the new model is proposed, its forward response is 

calculated and is compared with the measured data assuming 

either a Gaussian or Laplace distribution of errors.  The prior 

probability of each model is calculated by assuming a 

Gaussian distribution that favours models with small vertical 

gradients in resistivity.  Models are accepted or rejected 

according to the Metropolis-Hastings criterion (Metropolis et 

al., 1953; Hastings, 1970), and the algorithm is repeated either 

for a fixed number of MCMC iterations or until some 

convergence conditions are met. 

 

A wealth of information about model uncertainty, correlation, 

and non-uniqueness can be obtained by assessing the 

ensemble of accepted MCMC models.  Examples shown at the 

bottom of Figure 1 include (clockwise from top left): 2D 

histogram of resistivity versus depth, distribution of likely 

interface depths, distribution of number of layers in the model, 

distribution of data errors (as a percentage of amplitude at 

each frequency), and the distribution of plausible transmitter 

elevations. 

 

An example of this algorithm applied to a field dataset 

acquired in western Nebraska, USA (Smith et al., 2010), is 

illustrated in Figure 2.  Airborne FDEM data were acquired 

over a borehole where stratigraphic (Figure 2B) and downhole 

resistivity (Figure 2A, yellow curves) data were logged.  

Elevated resistivity in the borehole log coincides with gravels, 

which comprise the principal aquifer in this area, while 

decreased resistivity is observed in the silts and clays. 

 

A traditional least-squares ‘best fit’ model derived from the 

airborne data at this location (Figure 2A, green curve) is 

superimposed on the shaded histogram of MCMC models, 

along with the most-probable MCMC model (Figure 2A, blue 

curve), and the region that contains 95 per cent of the MCMC 

models (Figure 2A, magenta curves).   

 

 

Figure 2.  (A) Distribution of MCMC models compared 

with short-and long-normal resistivity log data (yellow) 

from a borehole collocated with the airborne survey, and 

the traditional least-squares inversion result (green).  (B) 

Stratigraphic information from the borehole. 

 

While the traditional least-squares result in Figure 2A captures 

the general trend of the resistivity logs, it does not appear to 

be sensitive to the resistive layer between ~40 – 75 m depth.  

This discrepancy leads to two possible conclusions: (1) the 

airborne data are insensitive to this layer, or (2) the data are 

inaccurate and inconsistent with the downhole logs.  Analysis 

of the MCMC results, however, provides a more complete 

picture.  Although not the most probable solution, there are 

many plausible solutions consistent with the data and prior 
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information that do include this resistive layer, as evidenced 

by the darker shading (more models) at elevated resistivity 

values.  In addition, the distribution of MCMC models 

provides a more robust assessment of uncertainty on the depth 

to the transition to lower resistivity values ~ 100 m depth, as 

well as bounds on the likely values of resistivity.  

 

Two-dimensional algorithm  

 

Airborne data are densely sampled along multiple long 

(typically 20 km or more) survey lines, which facilitates a 2D 

analysis of the data.  In order to make the MCMC approach 

tractable for 2D problems, a geostatistical parameterization is 

used to reduce the number of underlying parameters.   Here, 

these underlying parameters include the resistivity mean and 

variance for each facies, as well as the vertical and horizontal 

correlation lengths, although any of these parameters can 

remain fixed to simplify the problem.  In addition, the trans-

dimensional approach discussed for the 1D case can be 

implemented by allowing the number of facies to vary for each 

proposed model.  By proposing new models using a 

geostatistical basis, lateral continuity along the profile is 

naturally enforced. 

 

In the 2D case, the Markov chain is initialized using 

information derived from traditional least-squares inversion of 

the data (Figure 3), which reduces the time needed to begin 

sampling relatively high-probability regions of the model 

space.  An initial facies model is defined by thresholding the 

least-squares result, selecting a mean resistivity value for each 

facies, and defining vertical and horizontal correlation lengths. 

 

New models are proposed in several steps, though this process 

can be simplified by keeping some optional parameters fixed 

in order to reduce the number of unknowns (Figure 3).  In the 

first (optional) step, the number of facies and/or facies 

properties are perturbed.  Allowing the number of facies to 

vary incorporates the trans-dimensional concepts applied to 

the 1D problem, where models with fewer facies are implicitly 

favoured.  The properties of each facies- specifically, the 

resistivity mean and variance, and correlation lengths, can also 

be optionally perturbed. 

 

Next, a new distributed facies model is proposed by running  a 

sequential indicator simulation (Deutsch and Journel, 1997) 

using the previously defined number of facies and correlation 

lengths.  In addition, the indicator simulation is constrained by 

a fixed percentage of values from the previous model, which 

ensures that the perturbed model remains close to the previous 

model.  The number and locations of values that remain fixed 

can be chosen to achieve a desired MCMC acceptance rate, 

and can also be selected according to locations in the model 

with acceptable data fit. 

 

In the final proposal step, fixed resistivity values can be 

assigned to each facies, or (optionally) a sequential Gaussian 

simulation (Deutsch and Journel, 1997) can be used to 

incorporate heterogeneity within each facies according to the 

previously defined resistivity mean and variance.  Again, the 

sequential simulation is constrained by the same fixed values 

from the previous model in order to ensure modest changes in 

the proposed model. 

 

Once resistivity values are assigned, the forward response is 

calculated and compared with the measured data.  The forward 

response can be calculated in 1D at each location in the 

model, or using 2D or 3D algorithms that account for lateral 

sensitivity of the airborne system. In either case, this step is 

easily parallelized, with each forward calculation assigned to a 

different processor.  Because the system footprint is small (up 

to several hundred meters) compared with the profile length 

(tens of kilometres), even 2D or 3D forward algorithms can be 

run in parallel using different segments of the profile (Cox and 

Zhdanov, 2008). 

 

 

Figure 3.  Flowchart for 2D Bayesian MCMC algorithm 

(top), with examples of resulting facies models drawn from 

the posterior distribution (bottom) that can be used to 

produce secondary products such as the probability of any 

location falling within a particular facies.  Optional steps 

are shaded in blue. 

 

 

Models are accepted or rejected according to the Metropolis-

Hastings criterion (Metropolis et al., 1953; Hastings, 1970), 

and the algorithm is repeated either for a fixed number of 

MCMC iterations or until some convergence conditions are 

met.  Given the limited lateral sensitivity of the data, portions 

of the model with acceptable data fit can be accepted and 

regions with poor fit can be rejected.  A fraction of the values 

from the accepted parts of the model are then used to constrain 

the next MCMC sample. 

 

The ensemble of accepted MCMC models drawn from the 

posterior Bayesian distribution now include 2D facies-based 

resistivity models (Figure 3, bottom) and (optionally) 

distributions of the resistivity mean and variance for each 

facies as well as the number of facies.  From this distribution, 

inferences can be made about the probability of any given 

location falling in a particular facies (Figure 3, bottom). 
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CONCLUSIONS 
 

Bayesian MCMC methods provide a useful framework for 

model assessment and uncertainty analysis of airborne 

frequency-domain electromagnetic data.  Incorporation of a 

trans-dimensional algorithm, where the number of unknown 

parameters is allowed to vary, provides substantial flexibility 

in model parameterization.  A 1D analysis can be effectively 

utilized to investigate uncertainty in different characteristic 

regions of a survey area, but is limited to small portions of the 

dataset.  We introduce a 2D approach to the MCMC analysis 

that uses a geostatistical parameterization in order to reduce 

the number of underlying parameters.  This parameterization 

naturally incorporates lateral constraints in the proposed 

models, which cannot be accomplished with individual 1D 

soundings.  Calculating the forward response to a proposed 

model, which is the most computationally expensive part of 

the algorithm, is readily parallelized because of the limited 

footprint of the airborne system. 
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