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SUMMARY

Modern data acquisition technology in airborne
electromagnetics (AEM) produces huge data sets which
cover areas of considerable extend. Both the large size of
the domain of interest, in general a three-dimensional
volume, and the large number of transmitters and
receivers pose challenges to any type of modelling or
inversion software. Solution of the inverse problem
requires repeated solves of the forward problem. The
time to solve one forward problem in turn scales linearly
with the number of transmitters. In this paper we
examine stochastic optimization techniques for the
solution of the inverse problem which essentially allow us
to work with small subsets of transmitters/receivers and,
thus, reduce the computational load significantly.
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INTRODUCTION

In recent years significant advances have been made in our
ability to model and invert electromagnetic data (Newman and
Alumbaugh, 1997a, b; Haber et al, 2004; Newman and
Alumbaugh, 2000; Zhdanov and Fang, 1996; Mackie et al.,
1993; Schwarzbach et al., 2011). Most forward modeling and
inversion codes rely on a combination of staggered grids finite
difference/volume methods in order to model the
electric/magnetic field and the regularized output least squares
approach in order to invert the data. While this approach has
worked for synthetic and field data sets it is computationally
expensive. In the bottleneck of the computations stands the
solution of the forward problem, that is, the solution of the
discretized system of Maxwell’s equations in space and
frequency/time. Upon discretization of the forward problem a
large sparse and ill-conditioned matrix is generated. For
realistic problems the size of the matrix can easily be in the
order of millions of degrees of freedom. Recent data
collection has put forward another great challenge. Since the
number of sources and receivers is very large one has to solve
the forward problem many times. Furthermore, for the
computation of the Gauss-Newton step, the fields for each
source have to be saved. This constitutes a major difficulty
when the number of sources and receivers is large as computer
memory needs to be allocated. As a result, solving problems
where the number of sources/receivers is in the thousands is
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done only when the significant computational resources are
available. In this paper we experiment with a number of
computational techniques to overcome these difficulties.

First, in order to reduce the number of degrees of freedom of
the forward problem we use a finite element formulation that
allows the use of semi-structured (OcTree) and unstructured
grids. Second, in order to solve the problem with many
sources/receivers we use stochastic optimization techniques
that allow us to work only with a subset of source/receiver
combinations at each iteration. A brief outline of these ideas is
given in the following section. We will conclude this
extended abstract with a small numerical example and a
summary.

METHOD

Forward problem

For the forward problem we consider Maxwell’s equations in
frequency domain

Vx 'V xE; - iocE; = iwg;, 1

j=1, ..., n,, accompanied with Neumann boundary conditions.

Here, E; denotes the electric field, o is the (possibly complex)
electrical conductivity, u is the magnetic permeability, w is the
angular frequency and ¢; is the source. We assume that there
are n, sources which give rise to ; electric fields.

We solve problem (1) employing an edge finite element
discretization on a tetrahedral mesh (Jin, 1993; Monk, 2003;
Schwarzbach et al, 2011). The use of semi-structured
(OcTree) and unstructured meshes enables us to easily deal
with bathymetry as well as with the rapid decay of the fields
away from the sources without generating a fine mesh
everywhere. Upon discretization we obtain a system of linear
equations

AmU=0 2

where the /™ column of Q and U respectively contain the
source contribution and the electric field degrees of freedom
of the j* transmitter. In view of the inverse problem, the
system matrix A(m) is assumed to be parameterized by the
model vector m whose k™ entry corresponds to the log
conductivity of the &A™ element, this is, o= ¢”. Equation (2) is
solved with the parallel, sparse direct solver PARDISO
(Schenk and Giértner, 2004, 2006). A single factorization of
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the system matrix allows for the solution of many right hand
sides, the computation of the gradient and the computation of
the Gauss-Newton step (Pratt, 1999; Haber et al., 2000).

We assume that the model—data relation is given by a matrix
function

D(m) =P"A(m)" Q 3)

where P is a matrix which interpolates the electric field
degrees of freedom U(m) = A(m)™ Q into the receiver location.
The (i, j)* entry of data matrix D(m) is the measured datum
that corresponds to the i receiver and the /" source.

Inverse problem

Assume that we observe the data matrix D*. Our goal is to
find a “reasonable” model m that fits this data up to some
tolerance. Using the regularized output least squares approach
we seek a model that minimizes a functional of the form

F(m)=0.5 | W e (D(m) — D™) s
+05a ] Gm—myp) P (4

where e denotes the Hadamard product, || ||r denotes the
Frobenius norm and o is a regularization parameter. The
dense matrix W contains the inverse of the standard deviation
of each datum. The matrix G is chosen here as a (generalized)
derivation operator which is applied to promote smoothness of
deviations between the model m and a reference model m,..

To minimize the functional F(m) we consider two techniques.
First, if possible, we apply the inexact Gauss-Newton method
(Nocedal and Wright, 1999; Haber et al., 2004) to the first
derivative of F(m) with respect to m

V.. F(m) = g(m) =0. (5)

That is, at each iteration we (approximately) solve the linear
system

J(m)"J(m) + o G* G) dm = —g(m) (6)

and then update m by m + v dm where v <1 is a parameter
chosen to ensure that the value of the objective function
decreases (line search). J(m) = V, D(m) denotes the
sensitivity matrix. There is no need to compute the sensitivity
matrix J(m) directly. To solve equation (6), we use the
preconditioned conjugate gradient (PCG) solver (Barret ef al.)
with the Hessian of the regularization operator as a
preconditioner. We only require matrix vector products with
J(m) and J(m)". J(m) can be expressed as a product of sparse
matrices and their inverses; consequently, the matrix vector
products essentially reduce to solving the forward and adjoint
problems.

While the Gauss-Newton method has been one of the most
popular methods of choice for most least squares problems it
is difficult to apply when the number of sources is very large.
The difficulty stems from the need to store the fields that are
associated with all sources. For a large number of sources
such storage is impossible. In this case we use a more
“modest” optimization algorithm, the limited memory BFGS
(L-BFGS) algorithm (Nocedal and Wright, 1999). L-BFGS is
a quasi-Newton method that requires only the gradient and the
step update of the previous L steps. Since computing the
gradient can be done sequentially, it does not require the

storage of all fields. However, the efficiency in storage comes
with a price as convergence of L-BFGS is significantly slower
compared with the convergence of the Gauss-Newton method.

Stochastic optimization
The solution of (6) with a large number of sources is very time

consuming since the evaluation of the data misfit scales
linearly with the number of sources (Table 1).

LDL"-factors solves
data misfit 1 n
gradient ny
n. PCG steps 2 Negny
ny, linesearch steps njg Nys Ny
total 1+ ny 2+ 2 et ny,) ny

Table 1. Cost of forward solution of one Gauss-Newton
step. Note that we store the matrix factors L and D and
reuse them for the computation of the gradient and of the
search direction (PCG).

For the computation of the gradient one requires 2n, solutions
of Maxwell’s equations as well as the storage of these fields.
For large scale problems the computation and the storage
requires excessive computational resources. In recent years,
problems with multiple sources have been studied (Krebs et
al., 2009; Haber et al., 2010) and efficient techniques that are
based on stochastic optimization have been proposed for the
solution. Here we explore and experiment with a variant of
stochastic optimization. To use stochastic optimization we
introduce the random variable & that takes the values 1, ..., n,
and rewrite the problem in its stochastic form

F(m)=0.5E|| W.; ¢(D.Am) - D) |
+05allGm—me|* (7)

where E is the expected value and W, denotes the &" column
of W. This is a classical formulation of stochastic
optimization (Shapiro et al., 2009; Juditsky et al., 2009). Such
problems have been extensively studied in the optimization
literature.  In particular, we make use of a stochastic
optimization algorithm that has a very simple and remarkable
property. At each step it requires only a single (or a small)
number of samples from & It has been shown in Shapiro et
al. (2009) and Juditsky et al. (2009) that if the samples are
replaced at each iteration and if the stepsize is damped
appropriately then such algorithms are guaranteed to converge.
The obvious advantage of such an algorithm is that at each
iteration only a (random) subset of the sources is treated and
therefore it requires a much smaller storage compared with
standard optimization techniques. The use of a small number
of sources (at each iteration) also allows for the incorporation
of the Gauss-Newton method thus gaining on the L-BFGS
method that does not use explicit information about the
sensitivities.

RESULTS

We illustrate the three approaches discussed above by an
example problem. The experimental setup comprises 128
transmitters and 1,920 receivers, this is, a data set of 245,760
data points. We seek to reconstruct a model vector m with
109,065 entries. The full data set with all 128 sources is
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inverted using (a) the classical Gauss-Newton method, (b) L-
BFGS with storage of 20 vectors for the approximation of the
inverse Hessian, and (c) stochastic optimization. For the
Gauss-Newton method, we stop the PCG solver [equation (6)]
when the tolerance is 107" or after 20 iterations. For the
stochastic inversion we utilize only 6.25% of the full data set,
chosen randomly at each iteration. 8/128 sources are chosen
at random and 3 Gauss-Newton steps are performed for these
8 sources. The next iteration is started on the final model of
the previous step but with another instance of randomly
chosen sources. This procedure is repeated here to make a
total of 16 random realizations. Using the same regularization
parameter, the deterministic variants (a) and (b) reduce the
initial data misfit to about 3.3% and the stochastic variant (c)
to about 7.7%. The predicted models obtained by the three
optimization variants differ only slightly.

GN L-BFGS S-GN
iterations 20 100 16x3
LDL"-factors 21 132 66
solves 118,016 33,792 14,544

Table 2. Iteration numbers, number of matrix

factorisations and backward/forward solves for three
optimization strategies: Gauss-Newton (GN) and L-BFGS
inversion of the full data set with 128 sources. Stochastic
inversion (S-GN) with data subsets of 8 randomly chosen
sources, 16 realisations, 3 Gauss-Newton steps each.

Table 2 summarizes the major computational load of the
inversion, that is, computing the LDL"-factors of the system
matrix A(m) and carrying out forward/backward solves for a
large number of right hand sides. Due to its faster
convergence, the Gauss-Newton method requires less
iterations and, consequently, less LDL"-factors than L-BFGS.
However, the computation of the Gauss-Newton model update
requires the solution of a linear system with the Hessian
matrix. Even a moderate number of PCG steps leads to a
substantial amount of backward/forward solves. Despite the
slightly higher data misfit the stochastic inversion strategy
proves to be the most efficient of the three methods.

CONCLUSIONS

In this work we have explored the solution of large scale
electromagnetic inverse problems. We have used a
combination of techniques to obtain an efficient and robust
code. The number of unknowns in the forward problem is
reduced by employing a finite element discretization of
Maxwell’s equations on semi-structured or unstructured
tetrahedral meshes. Stochastic optimization techniques reduce
the number of forward problems to be solved. Combining
these techniques we are able to solve electromagnetic inverse
problems that are traditionally solved using intensive
computational platforms on modest ones. We anticipate even
bigger improvements for problems where iterative methods
are needed for the solution of the forward problem.
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