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INTRODUCTION 
 

Geophysicists aim to integrate and analyse data and physical 

properties of a given area, in order to obtain geologically 

viable interpretations. Different datasets represent different 

rock properties such as density or magnetic susceptibility. In 

recent years, new methodologies have emerged based on the 

idea that different physical properties tend to change at the 

same location (Zhang and Morgan, 1996; Haber and 

Oldenburg, 1997; Gallardo and Meju, 2003, 2004; Saunders et 

al., 2005). 

 

The use of cross-gradient products as a measure of structural 

similarity in 3-D joint inversions was developed by Gallardo 

and Meju (2004), and has since been applied to gravity and 

magnetic data by Fregoso and Gallardo (2009). 

 

In this paper we compute the cross-product of horizontal 

gradients of airborne vertical gravity and magnetic intensity 

data. We then use the angle and cross-product values between 
the horizontal gradients of each dataset to produce a combined 

product. 

 

We begin with a very brief introduction of the cross-gradient 

products and review their properties. We test the method on a 

synthetic model and apply it to FALCON™ airborne gravity 

gradiometer (AGG) and magnetic data from the western zone 

of the Halls Creek Orogen, Western Australia. 

 

METHOD  

 
The following theory follows the work of Gallardo and Meju 

(2003). The 3D cross-gradient function is given by t where m1 

and m2 are any two geophysical model parameters (Equation 

1). Following cross-gradient methodology, structural 

similarity is achieved when t equals zero (Equation 2), i.e. 

when collocated gradient vectors are parallel or one of them is 

null. For this application, with will use the z-component of the 

cross-gradient function (tz) (Equation 3). 

t(x, y, z) =  ∇∇∇∇m1(x, y, z) ×∇∇∇∇m2(x, y, z)  (1) 

      t(x, y, z) =  0,   (2) 
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The z-component quantifies the structural similarities in 

planes normal to the component direction. Cross-gradient tz 

values depend on gradient magnitudes and sine of the angle 

between the gradient vectors. Theoretically, where tz is small 

structural similarity is high. Small tz values can be generated 

by small angle values or small gradient magnitudes. For the 

purpose of this paper, we focus on small angle values between 

the gradients in areas with different physical properties. 

 

The geophysical model parameters we analyse are commonly 

used in potential field interpretation: the vertical component of 

the gravity vector (g) and the reduced to magnetic pole total 

magnetic intensity (TMI_RTP). 

 

The FALCON™ AGG system measures φ∆ and φxy gravity 

gradients (Lee, 2001); from them the vertical gravity gradient 

(φzz) and the vertical component of the gravity vector g are 

derived. The resolution of the gravity gradient measurements 

can be as good as 3.0 Eötvös and 0.15 milligals. 

 

MODELLING 
 

The application of curvatures with existing interpretation 

methods was tested using a synthetic model (Figures 1, 2 and 

3). The model was assigned a density contrast of 0.25 g/cc, a 

susceptibility contrast of 0.01 SI, a 250m depth to top of 

model, and 3km body depth extent. The model was also 
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assigned a strike length of 15 km, 10km width, and a 60o dip 

towards the north-northwest.  

 

As different regions may have different gradient magnitudes, it 

may be important to normalize the gradients before 

calculations and experiment with different colour tables and 

transformations to better visualize the results. 

 

In general, the structural similarity decreases with increasing 

distance from the structure. Cross-product values are often 

maximized at corners of the model and minimized over edges, 

while cross-gradient angles tend to contour the edges of 

structures. The cross-gradient angle helps to distinguish 

between directly correlated regions (angles close to 0°), 

inversely correlated regions (angles close to 180°), and non 

correlated regions (angles close to 90° or −90°) within the 

magnetic and gravity data. The cross-gradient angle may also 

aid in the identification of regions of interest, which can then 

be viewed with the cross-gradient magnitude image to 

evaluate structural similarity. 

 

The cross-gradient results of the synthetic model indicate 

some prospective aspects that can be applied to real geological 

problems, such as improved edge detection in regions 

characterized by parallel gravity and magnetic responses or a 

red colour in the cross-gradient angle imagery. 

 

 
Figure 1. Model 3D view looking south of NNW dipping 

block with a vertical NE edge. 

 

 
Figure 2. Synthetic model results of the cross-gradient 

(normalised) magnitude. Magnitudes range from red = 8.78 

to purple = −−−−9.02.  

 

 
Figure 3. Synthetic model results of  cross-gradient angle  

When the cross gradient angle is 0°°°° or 180°°°°  a red colour 

appears within the data, while angles around 90°°°° appear 

green. 

 

APPLICATION 
 

The cross-gradient method was applied to FALCON™ AGG 

data from the western zone of the Halls Creek Orogen, 

Western Australia (Figure 4). The application of 

cross-gradient information is presented here with the aim of 

simply illustrating how our understanding of the 

cross-gradient relates to the geology. 

 

 
Figure 4. Sketch map outlining the Halls Creek Orogen in 

Western Australia. The AGG data area presented below is 

outlined in red (Sheppard et al., 1997). 

 

Figures 5 and 6 display cross-gradient magnitude and angle of 

the AGG data over a rheologically rigid block within the 

Western Zone of the Halls Creek Orogen.  
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Figure 5. Cross-gradient magnitude imagery overlain by 

the published 1:1M geology line work in the Halls Creek 

Orogen, Western Australia (modified from Stewart, A.J. et 

al., 2008). Faults are shown with black lines, and geological 

boundaries are shown with grey lines. Values range from 

1.0 (red) to 0 (purple).  

 

 
Figure 6. Cross-gradient angle imagery overlain by the 

published 1:1M geology line work in the Halls Creek 

Orogen, Western Australia (modified from Stewart, A.J. et 

al., 2008). Faults are shown with black lines, and geological 

boundaries are shown with grey lines. Values range from 

180°°°° (red) to −−−−180°°°° (purple).  

 

 

The geology over the area consists primarily of granitoids, 

dolerite, gabbro, and ultrabasic intrusions, and minor 

sedimentary units. The published 1:1M scale geology line 

work (modified from Stewart, A.J. et al., 2008) is overlain on 

Figures 5 and 6 to display basic similarities and contrasts 

between the cross-gradient data and previously published 

work. 

 

Cross-gradients when applied in conjunction with other 

derivative products including the vertical gravity (gD) and 

vertical gravity gradient (GDD) have advantages that include 

improved edge detection and identification of subtle features 

related to parallel gravity and magnetic responses. Observed 

highs in the cross-gradient magnitude can often be correlated 

with high values in the horizontal gradient of the vertical 

gravity. The cross-gradient angle displays additional subtle 

features that are often not recognizable in other derivative 

products of either vertical gravity or TMI_RTP. 

 

CONCLUSIONS 

 
Computing the cross-gradient product of airborne vertical 

gravity and magnetic intensity data provides a method to aid 

interpretation by utilising the angle and cross-product values 

between the horizontal gradients of each dataset. 

 

The cross-gradient method was tested on a synthetic model 

and applied to FALCON™ airborne gravity gradiometer data 

from the Halls Creek Orogen, Western Australia. The 

horizontal gradients of the vertical component of the gravity 

vector and the reduced to magnetic pole total magnetic 

intensity were used as inputs.  

 

Cross-gradients values and angles provide another dimension 

of information to aid geological interpretation, especially the 

integration of different datasets, and should be included in the 

standard suite of images used for interpretation. 
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