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INTRODUCTION 

 

With emphasis being placed on uncertainty in groundwater 

modelling and prediction, coupled with questions concerning 

the value of geophysical methods in hydrogeology, it is 

important to ask meaningful questions of hydrogeophysical 

data and inversion results.  For example, to characterise 

aquifers using electromagnetic (EM) data, we ask questions 

such as ‘Given that the electrical conductivity of aquifer 'A' is 

less than x, where is that aquifer elsewhere in the survey 

area?’  An answer to this question may be given by examining 

inversion models, selecting locations and layers that satisfy the 

condition 'conductivity <= x', and labelling them as aquifer 

'A'.  One difficulty with this approach is that the inversion 

model result is often considered to be the only model for the 

data. In reality it is just one image of the subsurface that, given 

the method and the regularisation imposed in the inversion, 

agrees with measured data within a given error bound.  We 

have no idea whether the final model realised by the inversion 

satisfies the global minimum error, or whether it is simply in a 

local minimum.  There is a distribution of inversion models 

that satisfy the error tolerance condition: the final model is not 

the only one, nor is it necessarily the correct one (Tarantola, 

2005). 

 

AEM inversions often involve linearised approximations to 

the calculation of the Jacobian and Hessian matrices in the 

forward solution.  This results in a second order Taylor series 

expansion of the estimation of an error surface when 

calculating the misfit between forward model data and 

measured data.  In the vicinity of a minimum in the error 

surface, the first-order terms drop out and only second-order 

terms are present.  This guarantees that model parameters 

resulting from the inversion will be Gaussian distributed with 

mean model parameter values and model parameter variance 

terms.  The end product is the output of the inversion that is 

most often used, and we produce conductivity-depth sections 

from the ‘best-fit’ model parameters.  In this approach, 

however, we are neglecting the fact that those parameters 

contain variances and correlations, which are also of value.  In 

reality, because of the way we have constructed the inversion 

scheme, the model covariance terms contain information about 

how each model parameter interacts with each other model 

parameter for a given inversion output result.  The collection 

of variances is assembled in a posterior covariance matrix, 

where terms on the main diagonal are the autocorrelation 

values and terms off the diagonal are the cross-correlation or 

covariance terms. 

 

We can examine the posterior covariance matrix terms, and 

exploit the well-known characteristics of Gaussian statistics to 

ask meaningful conditional and marginal probability questions 

from the inversion data.  This is done so that we can ask 

questions such as: 'Given that the aquifer I am interested in 

has resistivity ranges between ρlow and ρhigh, where, how deep 

and how thick is the aquifer?'  The result is a probability map 

that shows the most likely location of the structure of interest 

given the conditional statements made when posing the 

question. 

 

In this presentation, we use the posterior covariance matrices 

from maximum-gradient inversion schemes, such as Em1dinv 

(Auken et al., 2005), to answer quantitative statistically 

meaningful questions about aquifer location, depth and 

thickness in an AEM system selection process for 

groundwater exploration along the Gascoyne River in 

Carnarvon, Western Australia.  We extend upon the results of 

Christensen and Reid (Christensen and Reid 2012) whereby, 

instead of using a stochastic approach to answer questions of 

the inversion results, we instead examine multivariate 

Gaussian integrals to evaluate our statistics.  We show the 

most probable depth and thickness of a portion of one of the 

more productive aquifers located along the northern side of the 

extended borefield reticulation development at Carnarvon. 

 

SUMMARY 

 

We summarise and extend the concept of Gaussian, or 

normal, distributions into multivariate statistics over 

many dimensions.  We demonstrate how multivariate 

statistics can be applied to probability distributions.  

Through assumptions in the linearisation of the inverse 

problem, we show that the best-fit inverse model 

parameters are normally distributed with mean values and 

associated variance and covariance values that obey 

Gaussian statistics.  Variance and covariance values 

describe how the model parameters interact with each 

other.  By changing one value in the model parameter 

vector, other parameters are changed through the 

covariance that links them.  We apply Gaussian statistics 

over many dimensions to query our models for 

statistically meaningful questions that can only be 

answered by taking the integral of the multivariate 

distribution over the multidimensional space that contains 

the model parameter values.  We illustrate this with an 

example of aquifer detection, using resistivity limits, for 

an electromagnetic transect adjacent to the Gascoyne 

River near Carnarvon, Western Australia. 
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THE GAUSSIAN DISTRIBUTION 

 

First introduced by DeMoivre, and then extensively improved 

by Gauss, the normal distribution is probably most 

recognisable in its standardised modern form by Fisher 

(Fisher, 1990).  A variable x has a Gaussian, or normal, 

distribution when it can be expressed as        , a 

distribution that has some mean value µ and a standard 

deviation of σ such that the functional differential form of the 

distribution is: 
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All forms of         can be re-expressed in the more 

convenient form of the standardised normal distribution of 

      , such that the new variable z is renormalised to having 

a mean value of 0 and a standard deviation of 1.  This standard 

form leads us directly to the use of the z-statistic (whose 

integral over all values of z is normalised to 1), with the 

expression 
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and is shown graphically in Figure 1. 

 

 
Figure 1. The z-distribution: a standardised normal 

distribution with mean 0 and standard deviation 1.  All 

Gaussian distributions may be expressed like this. 

The Gaussian distribution becomes important when we 

consider the function      to represent a probability 

distribution function of the variable z, and this is useful in 

considering random processes, curve fitting, error and, in this 

paper, inversion. 

 

Extension to more than 1 dimension 

 

We can easily extend the Gaussian distribution of variables to 

more than one dimension by considering the collection of 

variables x1, x2, …xN as a vector of variables x.  Each variable 

still retains its own standard deviation σ, but these are now 

more conveniently expressed using the concept of variance 

(which is simply the square of the standard deviation).  We 

therefore extend the notation of standard deviation into σij, 

where it is implicit that this value represents the true variance 

of the variable xi when i = j (in σii), and it represents the 

covariance of variable xi and xj when we examine σij.  We 

accumulate the variances and covariances into matrix Σ, 

whereby 
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and the mean value of each variable into vector µ.  Each 

element µi of µ is the mean value of xi.  The Gaussian 

probability distribution then takes the more general 

multivariate form of 
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AN EXAMPLE IN TWO DIMENSIONS 

 

We consider an example of variable distributions in two 

dimensions, since it is easy to visualise.  The variables x1 and 

x2 both have mean 0 and variance 1, but they are related to 

each other by the covariance σ12 = 0.6 such that  
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] . 

A realisation of their distribution is shown in Figure 2. 

 

 

 
Figure 2. A realisation of the 2-D multivariate distribution 

of 2 variables, both of mean 0, variance 1 and covariance 

of 0.6. 

From the probability distribution function, we can ask the 

question ‘What is the probability of x1 ≥ 1?’ (Answer: 0.157) 

or the question ‘What is the probability of x2 ≥ 0.5?’(Answer: 

0.31).  However, by knowing the covariance between x1 and 

x2, we can also ask the question ‘What is the probability of x2 

≥ 0.5, given that we know that x1 ≥ 1?’  This is now a 

conditional probability, and the covariance between x1 and x2 

indicates that their relationship is important.  The answer, 

0.109, is calculated by taking the integral of the probability 

distribution function over both dimensions 1 and 2. 

 

THE NORMAL DISTRBUTION IN INVERSION 

 

In electromagnetic geophysics, the relationship between 

survey data and a valid model of the conductivity structure of 

the earth, is problematic.  There are a limited number of direct, 

closed-form expressions between conductivity and a 

transmitter-receiver array.  Even a relatively simple model, 

such as a 1-dimensional layered earth with dipole transmitters 

and receivers (eg Wait, 1982) results in a non-linear 

relationship between data and model structure.  In order to 

invert upon such functions, we often simplify the problem by 
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linearising the calculation of the derivatives of the sensitivity 

of the function to the model parameters.  The resulting Taylor 

expansion, in the vicinity of a minimum point of the misfit 

calculation, ensures that the first-order terms are effectively 

zero, and that our estimation of the error surface is only 

second-order.  The resulting error calculation ensures that each 

of our model parameters, that are sufficiently in the vicinity of 

a minimum, be distributed with mean values µi, variance σii, 

and covariance with model parameter j as σij.  The inversion of 

the measured data, and the generation of the conductivity-

depth model produces both the vector µ (which is what we call 

the best-fitting model, and is the ‘end-product’ for most 

inversions); but it also produces the posterior covariance 

matrix C which is an expression of the variance and cross-

correlation between model parameters in the inversion based 

on the assumptions that we have made regarding the 

calculation of the sensitivity of the forward function in the 

vicinity of a minimum in the error surface.  We therefore can 

express the end result of an inversion as a collection of mean 

values normally distributed about the mean with 

multidimensional auto- and cross-correlations connecting the 

expression of the mean parameters.  Changing one parameter 

necessarily changes another (eg Aster et al., 2005). 

 

GASCOYNE RIVER, WESTERN AUSTRALIA 

 

As part of its Water for Food Program, the Department of 

Agriculture and Food, Western Australia (DAFWA) has an 

interest in determining the full extent of the groundwater 

resources along the Gascoyne River near Carnarvon, Western 

Australia.  To this end DAFWA is partnering with CSIRO to 

investigate the potential use of airborne electromagnetic 

(AEM) surveys for groundwater exploration and detection.  As 

part of the AEM system selection process, ground TEM data 

were acquired along a 400 m north-south transect from 

borehole 1910 to the shoreline of the Gascoyne River (Figure 

4).  The target aquifer, which bore 1910 taps into, is located 

between 15 m to 30 m depth.  It is expected to persist to the 

Gascoyne River where it is recharged during the wet season.  

Forward and inverse models for an AEM system are derived 

by using the ground TEM conductivity-depth profiles as 

‘truth’ in the forward model, and inverting upon the ‘true’ 

forward data for the system being considered. 

 

We characterise the target aquifer by defining the following 

parameters: depth to the top of the aquifer dt; depth to the 

bottom of the aquifer db, lower limit of aquifer resistivity ρAl 

(10 Ωm); and upper limit of resistivity ρAu (∞).  To determine 

detection of the aquifer, we ask the following question: ‘For 

every layer i of the inverse model, and for every layer j of the 

same model (whereby j is equal to or greater than i up to layer 

N of my inverse model), what is the probability that layers i to 

j satisfy my aquifer conductivity range, given that layers j+1 

to N do not satisfy this range?’  This question, which relies 

heavily upon the auto- and cross-correlation values of the 

posterior covariance matrix that results from the inversion 

scheme used, is answered through integration of multivariate 

Gaussian distributions over N dimensions.  Each station 

involves N2/2 layer combinations of the inversion model 

whereby the probability distribution is queried (for example, 

layer 1 can have j = 1 to N, layer 2 can have j = 2 to N, etc).  

The probability value for each layer at the sounding location 

of 280 m is shown in Figure 3.  By summing the probability 

value over each layer, we arrive at a cumulative probability 

distribution for an individual sounding.  In the example shown 

in Figure 3, we see that the greatest probability of an aquifer 

satisfying our resistivity criteria occurs over layers 14 to 20.  

This cumulative probability distribution is then displayed in 

section for each sounding.  The resulting probability transect 

is shown in Figure 5, whereby the most probable depths and 

thicknesses of the aquifers are shown in dark blue, whereas 

areas with lower probability are lighter in colour. 

 

 
Figure 3. Probability value for each layer of the inverted 

model parameters of the 280 m AEM sounding based on 

resistivity limits of the aquifer characterisation question. 

 

CONCLUSIONS 

 

In this presentation, we have summarised the concept of 

Gaussian distributions, whereby a variable is statistically 

described as having a mean value and a variance, and 

extended to multivariate distributions.  The mean value of the 

variables, whose distribution can be expressed as a vector of 

mean parameters is described with a variance (in the variable 

itself) and a series of covariances which describe how the 

variable interacts with other variables in the collection.  We 

show how, through the assumptions in an inversion scheme, 

the concept can be adapted to the estimation of the model 

parameters.  Every model parameter is then a Gaussian 

variable with mean value and a vector of variance and 

covariance.  We exploit the multidimensional relationship of 

the model parameters to pose statistical questions of the 

inversion data, an example of which has been shown for 

aquifer detection in the Gascoyne River near Carnarvon, 

Western Australia. The resulting cumulative probability 

section affords a method of aquifer detection where the more 

likely areas of an aquifer, based on electromagnetic data, exist 

in the subsurface. 
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Figure 4. A 400 m NanoTEM transect used as a ground-model for AEM system selection.  Interpretation of lithology and 

aquifer characteristics are overlain on the models. 

 

 
Figure 5. Aquifer likelihood based on consideration of the aquifer determination parameters and the cumulative conditional 

probability calculated from the inversion model mean resistivity vector and posterior correlation matrix.  Multivariate 

Gaussian statistics are used to calculate the conditional probability for each layer, and then we accumulate layer probability 

to derive a relative likelihood of finding layers that satisfy the aquifer conditions. 


