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INTRODUCTION 
  

Multiple attenuation plays an important role in the pre-

processing of seismic data, and has a significant impact on 

obtaining high quality seismic images. Generally, the process 

involves two steps: the prediction of multiples and the 

separation of the primaries and the multiples. Considerable 

effort has been spent on the prediction of multiples in the last 

two decades. Methods such as Surface Related Multiple 

Elimination (SRME) are used routinely in the industry. Aside 

from long-period multiples that are effectively handled by 

SRME, short-period multiples generated by a shallow seafloor 

and internal multiples generated by subsurface interfaces of 

high impedance contrast have also attracted attention from the 

research community (Hargreaves, 2006; Wang, et al, 2011; 

Wang, et al, 2012).  

 

Apart from the advancement in multiple prediction, an 

effective strategy for separating the multiples from the 

primaries is equally important. One of the most widely 

accepted separation strategies is the L2-norm based least-

square separation method (LS) (Verschuur and Berkhout, 

1997). It allows for a degree of inaccuracy in the prediction of 

the multiples, including traveltime, amplitude and spectrum 

errors. However, a compromise has to be made between the 

preservation of primaries and the attenuation of multiples, 

especially in places where primary and multiple events cross 

one another or overlap. For this reason, curvelet-based 

separation methods have been attracting increasing attention in 

recent years. They have the advantage of minimizing the 

damage to the primary events due to the compatible nature of 

the curvelet transform to seismic data (Herrmann, et al., 2008). 

Nevertheless, among various implementations of curvelet 

domain separation approaches, the non-adaptive 

implementations may encounter numerical divergence if the 

predicted multiples are very different from the multiples in the 

data; and the adaptive implementations either only correct for 

limited misalignment between the predicted and actual 

multiples, or suffer from high computational cost due to the 

use of curvelet matching filtering (Saab et al., 2007; 

Neelamani, et al., 2010).  

 

In this paper, we present our adaptive implementation for 

primary-multiple separation. Our approach achieves a high 

degree of robustness and fidelity in primary-multiple 

separation by overcoming the difficulties that have afflicted 

previous methods. 

 

FRAMEWORK OF CURVELET DOMAIN 

SEPARATION 
 

Curvelet domain separation is applied for removing multiples 

from noisy seismic data. It involves the curvelet transform and 

a process for simultaneously separating the multiples and the 

primaries from each other. The curvelet transform is a multi-

scale and multi-dimensional transform (Candès et al., 2006), 

which can be written as: 
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where  (   ⃑   ) is the curvelet coefficient indexed by its 

frequency band  , dip   and time-space displacement  ⃑ , and 

 (   ) is the 2D seismic sample at time   and position  ; 

    ⃑   (   ) is the curvelet basis. Both  ⃑  and   increase in 

dyadic order for every other  , hence the term “multi-scale”. In 

contrast to the time-space or frequency basis, a curvelet is 

localized in both frequency and time-space, as shown in 

Figure 1. In seismic data, most events are either linear or 

SUMMARY 
 

In this paper, we propose an adaptive implementation for 

separating multiples from primary events in seismic data 

and subsequently removing the embedded multiples from 

noisy seismic data using the curvelet transform. Because 

of the sparseness of the curvelet coefficients of seismic 

data, the optimization problem is formularized by 

incorporating L1- and L2-norms, based on the framework 

of Bayesian Probability Maximization. Iterative soft-

thresholding can be used for solving the above 

optimization problem. By making use of least-square 

matching filtering, we precondition the multiple models 

to match the actual multiples in the seismic data prior to 

the separation step. 

 

Moreover, in order to meet the challenges faced by 

various types of data complications, we develop a 

frequency regularized adaptive curvelet domain 

separation approach. This flexibility overcomes the 

varying effectiveness of separation methods for different 

frequency bands in responding to the noise and model 

inaccuracy control. Accordingly, the high adaptability of 

this extension leads to its higher separation fidelity than 

existing curvelet domain separation implementations. We 

demonstrate the applications of our approach on synthetic 

and field data examples by comparing them with the 

results from the conventional least-square separation 

method. 
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curved in shape within a small spatiotemporal window, hence 

the needle-like curvelets form a suitable and natural basis for 

representing the data, which leads to the sparseness of the 

curvelet coefficients of the data. There exists a way to exploit 

this sparsity to separate multiples from primaries by using 

Bayesian Probability Maximization (BPM) (Saab et al., 2007).   

 

The conventional implementation of BPM is equivalent to the 

LS method. This is because the prior probability distribution 

of data and model is preset to Gaussian in BPM, and solving 

BPM results in extracting the power indices of the distribution 

function to formularize a quadratic summation form. In the 

curvelet domain, the L1-norm was introduced in the 

optimization problem as the sparse coefficients follow a 

steeper distribution than Gaussian (Saab et al., 2007).  An 

iterative soft-thresholding algorithm was used to solve this 

optimization problem (Daubechies, et al., 2004). 

 

In this paper, noting that the convergence of the iterative 

solver used by Saab relies on an initial estimation of the 

predicted multiples that is sufficiently close to the actual 

multiples in the data, we propose the use of least-square 

matching filtering to bring the amplitude, traveltime and 

spectrum of the predicted model closer to those of the actual 

multiples in the data prior to the step of the iterative soft-

thresholding optimization. The way we implemented it is to 

replace the original predicted model    in Saab’s equation by 

applying the designed matching filter     to it, i.e., the 

adaptive model, as shown in Eq. (2).    
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where    and    denote the primaries and multiples in the 

curvelet domain;   and    are the data and the predicted 

multiple model in time-space domain, respectively.   denotes 

the forward curvelet transform and      the inverse.      is 

proportional to the curvelet coefficients of the initial guess of 

model and data, and subscripts “      ” and “2” denote the 

element-wise weighted L1-norm, and L2-norm, respectively.   

is the overall noise control parameter. In this case, the iterative 

soft-thresholding algorithm can still be applied for solving Eq. 

(2). This implementation is termed as the Adaptive Curvelet 

Domain Separation method (ACDS).  

 

Current multiple prediction methods often suffer from the 

truncation of high-order multiple terms, spectral narrowing 

and noise contamination.  Uniform estimation of model 

inaccuracy and noise level in ACDS may not meet the 

complication of practical field data since the modelling error, 

noise and signal might occupy different frequency ranges. To 

avoid applying external filtering that would result in a 

multiple-fold increase in computational cost, we make use of 

the intrinsic features of curvelets. Noting that the curvelet 

transform naturally partitions data into different frequency 

bands, it is feasible to manipulate the curvelets in each 

frequency band independently. Hereby we propose a new 

approach termed Frequency-regularized Adaptive Curvelet 

Domain Separation method (FrACDS), to effectively separate 

primaries and multiples in the presence of model inaccuracy 

and noise contamination for each frequency band. The 

objective function of the optimization problem  (     ) can 

be recast as: 

 

                                (     )  ∑   (     )                           (3) 

where   (     ) holds the same expression as Eq. (2) but only 

with respect to scale   of all variables. The flowchart of the 

overall process is shown in Figure 2.  

 

SYNTHETIC AND FIELD DATA EXAMPLES 
 

Two simple numerical examples, as shown in Figure 3, were 

first tested to assess the performance of ACDS. In both 

examples, the multiple events crisscross the horizontal 

primary, and conventional LS produces compromised results 

which manifest as residual multiples at the crossing. In 

contrast, the multiple events are almost completely removed 

with minimal damage to the primary by ACDS. This is 

because the primary and the multiple events at the crossing are 

represented by different curvelet coefficients and hence they 

are well separated. 

 

In the next example of 2004 BP 2D model shown in Figure 4, 

we applied LS and ACDS to remove the multiples predicted 

by reverse time demigration (Billette and Brandsberg-Dahl, 

2005; Zhang and Duan, 2012), and compared the migration 

stacks. The first-order water bottom multiple is completely 

removed by ACDS but not by LS. By imposing ACDS, the 

migration swings are significantly attenuated at the top of the 

salt body on the right. Besides, the upper boundary of the salt 

body is distorted by LS on the left while is consummately 

preserved by ACDS. The superiority of preservation of 

primary events by ACDS is also reflected in the anomaly and 

the parallel sedimentary areas, as are pointed out by the 

arrows. 

 

A field data of a 2D line acquired from offshore Australia is 

shown in Figure 5. In this example, Shallow Water Demultiple 

(SWD) approach was applied to obtain the surface related 

shallow-water multiple model (Hung, et al., 2010). Due to the 

observed moderate noise level of the data shown in Figure 

5(a), we applied FrACDS for primary-multiple separation, and 

compared with the results by LS. From the enlarged insets in 

Figure 5(c) and (d), the major primary events are better 

preserved by FrACDS than by LS where residual shallow 

multiples penetrate. The effect of LS is also limited in 

attenuating the widespread noise that snaps and smears the 

image. The strategy we applied in FrACDS is to tolerate the 

noise level and to subtract the multiple related curvelet 

coefficients in the noise-intensive frequency bands. 

Consequently, the separation result by FrACDS presents a 

clearer image of lower noise level and more weakened 

residual multiples than that by LS. FrACDS provides the 

flexibility of the separation strategy leading to high separation 

effectiveness of real field data, but it also involves more 

parameters.  

     

CONCLUSION 
 

To summarize, we have improved the curvelet domain 

separation method for removing multiples from noisy seismic 

data. Synthetic and field data examples demonstrate that our 

approach outperforms the conventional LS method in terms of 

the noise attenuation, the multiple removal and the 

preservation of primaries. By applying least-square matching 

filtering to the predicted multiple model prior to the separation 

step, it has been shown that ACDS is more robust than the 

current implementations of curvelet domain separation thus is 

more adaptive to the models predicted by various methods. 

However, uniform estimation of noise and model inaccuracy 

throughout the spectrum in ACDS may not meet the 

challenges faced by various types of data. Hence we further 
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propose a more flexible implementation FrACDS by 

introducing the frequency-regularized strategy. FrACDS 

provides high fidelity by assessing the modelling accuracy and 

noise level in different frequency bands, as we did to attenuate 

the less credibly model multiples and high-frequency noise in 

the field data example.  
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        (a)    (b)  (c) 

Figure 1. (a): The curvelet tiling in frequency domain. 

 ̃     ( ) is the Fourier transform of curvelet basis 

    ⃑⃑   (   ) as shown in red for given   and  . (b): The 

curvelet in Panel (a) presented in time-space domain with 

zero displacement. (c): that with non-zero displacement. 

 

 

 
 

Figure 2. The flowchart of ACDS and FrACDS. The step 

“Frequency-regularization” is solely applicable to 

FrACDS. 

 

  

 

 

 
 

Figure 3. Left and right panels are two numerical 

examples illustrating LS and ACDS methods. Row (a): 

multiple contaminated data; (b): multiple models; (c): 

optimal LS; (d): ACDS results. 
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(a)  

 
(b) 

 
(c) 

Figure 4. (a): Multiple contaminated seismic data; (b): 

optimal LS result; (c): ACDS result. 

   

 
                      (a)                                          (b) 

 
                       (c)                                            (d) 

Figure 5. (a): multiple contaminated data; (b): SWD 

model; (c): optimal LS result; (d): FrACDS result. The 

insets are zoomed in of the rectangle areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


