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INTRODUCTION 
  

Gravity gradiometry presents multiple possible single 

component and combinations of components which can be 

used in interpretation. The purpose of each survey will dictate 

the choice of component(s), for example, qualitative mapping 

of dominantly N-S trending structures would focus on the Txx 

component. The information content of the components and 

their combinations with respect to the purpose is crucial to 

their effectiveness. Consequently, we need a quantitative 

rating of these values to guide our choice, especially when 

many combinations are available and more are likely to be 

suggested in the future.  

 

Qualitative comparisons of results of inversions for the 

underdetermined problem (solving for densities in a 3D 

volume mesh) using different component combinations have 

been done by looking at solution character and comparing 

with known geology (Zhdanov et al., 2004; Martinez and Li, 

2011; Martinez et al., 2013) An attempt at a quantitative 

comparison of tensor components and their combinations was 

made by Pilkington (2012) who used a measure of information 

content commonly used in optimal survey design to rate 

different components and some component combinations. Tzz 

was shown to provide the most information out of the single 

tensor components and that adding more components to the 

data vector improves the situation. Nonetheless, several 

limitations are inherent in using the underdetermined model 

formulation. One is that data errors are not considered. The 

second is that the model geometry is unrestricted and so it not 

possible to investigate individual model parameters and their 

effects on components. Thirdly, the number of parameters and 

related quantities quickly become unmanageable for large 3D 

volumes. Any standard measures of solution appraisal used in 

inversion like the resolution or covariance matrix have 

dimensions m × m (m is the number of parameters), too large 

to easily display or analyse, and often too large to calculate.  
 

Keeping the number of parameters small (tens or less) allows 

for a much easier assessment of solution appraisal measures. 

This suggests the use of parametric inversion, which involves 

the inversion of models described by only a small number of 

parameters (Oldenburg and Li, 2005). Using this approach, 

solution appraisal, through the covariance matrix for example, 

reduces to simply calculating a small number of parameter 

variances and covariances that are easily examined, even for 

multiple models (Christensen and Lawrie, 2012).  

 

METHOD 

  
The aim of this study is to use the estimated parameter errors 

resulting from inversions of single and multiple tensor 

components to quantitatively rate their information content. 

Table 1 gives a list of 17 different component quantities 

consisting of single tensor components, combinations of 

components, and concatenations of components.  

 

Linear inverse theory provides all the tools to examine the 

relationship between the different data types and the model 

parameters (Glenn et al., 1973; Inman, 1975). The model used 

in the following is a simple prism, characterized by just seven 

parameters: xc and yc, the x and y coordinates of the prism 

center; w and b, the prism width (in x) and breadth (in y); the 

density ρ, the depth to the top surface, z and the vertical 

thickness, t. Varying the dimensions of the prism allows a 
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wide variety of body shapes to be considered, e.g., blocks, 

plates, dykes, rods.  

 

1 - Txx 

2 - Txy 

3 - Txz 

4 - Tyy 

5 - Tyz 

6 - Tzz 

7 - Tuv = 0.5*(Txx-Tyy) 

8 - I1 = TxxTyy+TyyTzz+TxxTzz-Txy2-Tyz2-Txz2 

9 - I2  = Txx(TyyTzz-Tyz2)+Txy(TyzTxz-TxyTzz)+Txz(TxyTyz-

TxzTyy) 

10 - H1 = sqrt(Txz2+Tyz2) 

11 - H2 = sqrt(Txy2+0.25*(Tyy-Txx)2) 

12 - Tuv | Txy 

13 - Txz | Tyz | Tzz 

14 - Txy | Tyz | Txz 

15 - Txx | Tyy | Txy 

16 - Tzz | Tyz | Txz | Txy | Txx 

17 - Tyy | Tyz | Txz | Txy | Txx 

 

Table 1. List of component and component combinations 

used in this paper. Notation Tuv | Txy means that, for 

example, data vectors Tuv and Txy both with length n are 

concatenated to form an augmented data vector with 

length 2n. 

 

Consider the nonlinear forward problem relating the model 

parameter vector x (length m) to the data vector d (length n) 

d = f (x) .      (1) 

The data vector d may contain a single component, a 

combination of components, or a concatenation of several 

components (length > n). For the prism model, the parameter 

or model vector x contains the seven parameters xc, yc, w, b, 

ρ, z and t. Linearizing equation 1 with respect to the model 

parameters gives  

Δd = A Δx    ,     (2) 

where the elements of the n × m matrix A are given by ∂di/∂xj. 

Δd is the incremental change in the data values due to the 

parameter perturbation Δx. Matrix A can be decomposed into 

the singular value decomposition: 

A = U Λ V T .    (3) 

The columns of the n × m unitary matrix U are the 

eigenvectors ui and V is the m × m unitary matrix with 

columns vi. Λ is the m × m diagonal matrix containing the 

singular values λi. If A
+ is the generalized inverse of A given 

by 

A+ = V Λ-1 U T            ,    (4) 

then the solution of equation 2 is given by  

Δx = A+ Δd        .      (5) 

Once an inversion is completed, the errors in the model 

parameters can be estimated from the parameter covariance 

matrix C: 

C = Cd V Λ-2 V T      ,    (6) 

where Cd is the data covariance matrix. For most gravity and 

magnetic survey data, Cd can simply be written as σ2I, 

implying a constant data error variance of σ2. For gravity 

gradiometer data, tensor components may be characterized by 

different error levels, so this must be an option for Cd. For 

combinations of components, Cd is found from using standard 

rules for the sum and products of independent measurements 

(Mellor, 1954). From equation 6 it is apparent that the form of 

C is controlled mainly by the smallest singular values which 

cause large variances and covariances. Matrix A (equation 3) 

on the other hand is primarily controlled by the larger singular 

values. The individual model parameters are not limited to 

association with only the large or the small singular values. A 

parameter may have components in the eigenvector associated 

with the largest λ and in the eigenvector associated with the 

smallest λ, which means that it is an important contributor to 

the model response, but it is also prone to large errors.  

 

THE PRISM MODEL 

 
Examining the make up of A shows which parameters are 

important by quantifying their contribution to the model 

response. Parameters making large contributions are better 

determined when inverted, and vice versa. Figure 1 shows the 

singular values and eigenvectors for a prismatic model with 

parameters z = 3 km, t = 13 km, w = 12 km, b = 12 km, ρ = 0.2 

gcm-3. Calculations were carried out on a 64 × 64 grid with the 

center of the prism located at xc = 32 and yc = 32 km. Singular 

values and their associated eigenvectors are ordered from the 

largest, λ1, to the smallest, λ7. Figure 1 indicates that from λ1 

and v1 the main contributing parameter is the density, ρ. Much 

smaller contributions to v1 (not visible on plot) are made by z, 

t, w and b. These minor contributions can be significantly 

larger when z, t, w or b is small. The magnitude of λ1 increases 

with larger w, b, t, or smaller z. Singular values λ2 and λ3 are 

usually associated with contributions from the prism location 

parameters xc and yc. For the more directional components 

Txx, Txz, Tyy and Tyz the contribution from xc and yc is 

dependent on body shape and orientation. When sources have 

a dominant strike direction, then the position parameter 

perpendicular to strike contributes most.  

 
Figure 1.  Parameter eigenvectors (columns of matrix V) 

and eigenvalues for the six basic tensor components. The 
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model used is a prism with parameters z = 3 km, t = 13 km, 

w = 12 km, b = 12 km, ρ = 0.2 gcm-3.  

 

Singular value λ4 is associated mainly with the depth, z, plus 

lesser contributions from w (greater for Txx, Txz) and b 

(greater for Tyy, Tyz). As the thickness increases, the z 

contribution in v4 increases and decreases in v7, leading to a 

better determined z. When z → 0, z becomes more important 

and well-determined and dominates v2. Increasing z leads to a 

decrease in the magnitude of all singular values. Larger z 

increases the z component in λ5 and λ6, i.e., the smaller 

singular values, so the depth becomes less reliably estimated. 

Singular values λ5 and λ6 are most often associated with w and 

b plus minor contributions from z and t. Again, Txx and Txz 

are characterized by larger contributions from w and Tyy, Tyz 

equally for b. Again, when w and b are small they contribute 

more to the larger singular values and eigenvectors 

accompanying a corresponding increase in ρ contributions to 

v5 and v6. For λ7, the minimum singular value, v7 is most often 

dominated by the thickness, t, with lesser contributions from z, 

and possibly from w and b. The magnitude of λ7 decreases as t 

increases or z increases, or as w or b decrease. Estimating t is 

therefore difficult, particularly so when it is large (the bottom 

of the body is not detected) or small (t is not separable from ρ, 

as only the product ρt is estimable).  

 

In summary, the density ρ can be considered as a well-

determined parameter, along with (to a lesser extent) 

positional parameters xc and yc. The depth z is only well-

determined when small with respect to the prism size. The 

width and breadth parameters w and b are well-determined 

mainly when small, while the thickness t is generally a poorly 

determined quantity.  

   

PARAMETER ERRORS 

 
In determining individual parameter errors resulting from 

inversion, variable component errors should be addressed 

because the instrumental set-up can produce different noise 

levels in the components and also the pre-processing of 

components often results in changed component noise levels. 

Of these two sources of variable noise levels, the latter is more 

important because most pre-processing algorithms combine 

the original component measurements into a single quantity 

from which the final (processed) component values are then 

computed. Since the tensor components provide independent 

but related measurements of the gravity field, it is appropriate 

that they are combined by calculating the underlying field (or 

potential) or equivalent density distribution that models the 

field (Li, 2001; Barnes and Lumley, 2011). As a result, the 

two main pre-processing methods currently in use are the 

Fourier transform approach (to compute the field or potential) 

and the equivalent source method (to compute a density 

distribution). I consider just the Fourier method in the 

following, with the knowledge that for a horizontal 

observation level and a shallow equivalent source position, the 

results are comparable. Average values for the ratio of noise 

levels based on testing of many input noise scenarios are 1: 

0.37 : 0.7 : 0.59 for the components Tzz, Txy, Txz (=Tyz) and 

Txx (=Tyy), respectively. These are the values used to specify 

the six component noise levels in the following tests. Because 

components are being compared with each other, only relative 

noise levels are needed. 

 

To achieve a general picture of how well the different 

component quantities perform in terms of parameter errors, a 

range of models was tested. Varying t, w, b and z allows the 

model to range from shallow to deep prisms, and thin to thick 

plates and dykes. For each model the standard deviations of 

the parameter errors were calculated from equation 6. 

 

 
 

Figure 2. Parameter rankings versus component type based 

on 29 model inversions. For each inversion the parameter 

standard deviations were ranked for each parameter by 

component quantity (Table 1 list) with a value of 1 

assigned to the smallest parameter error and a value of 17 

to the largest. Plotted values are the sums of the ranked 

values. 

 

The resulting parameter standard deviations were then ranked 

for each parameter by component quantity (Table 1 list) with a 

value of 1 assigned to the smallest parameter error and a value 

of 17 to the largest. Summing the rank values for the 29 

models was used to produce Figure 2, which summarizes the 

relative performance of the component quantities in terms of 

individual parameter rankings. For each component quantity, 

there are seven points plotted, each corresponding to a single 

model parameter. Even though Figure 2 shows the sum of 

rankings for widely varying model shapes, the relative 

rankings are reflective of individual model parameter error 

behavior. Figure 3 shows parameter errors for a thin plate, 

demonstrating the general character of the final rankings in 

Figure 2. 

 

Figure 2 shows that most of the 17 component quantities have 

parameter rankings clustered fairly close together, implying 

that all parameters have similar rankings, i.e., none of the 

parameters are much more reliably estimated than the others. 

There is, nonetheless, a large spread in the rankings in Figure 

2 for the 4 directional single tensor components, Txx, Tyy, Txz 

and Tyz, since these components perform best along one axis, 

so for example Txx and Txz recover xc and w well, but yc and 

b are poorly estimated.  

 

The optimal design information measure Θ used in Pilkington 

(2012) varied with source depth and was generally 
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independent of the inverted component quantity at larger 

source depths. For shallower sources, differences in the 

component quantities were apparent: the concatenated 

components (quantities 13-17, Table 1) provided greater 

information content than the single components, in agreement 

with Figure 2. Tzz is an exception, being associated with high 

Θ but only an average ranking in terms of parameter errors. 

Nonetheless, Tzz shows a higher overall ranking than other 

single components in Figure 2. 

 
Figure 3. Parameter standard deviations from inversion of 

component quantities (Table 1 list) for the thin plate model 

shown.  

 

Some individual parameters are estimated with lower errors 

than using Tzz but these are limited to a few cases of 

parameters benefitting from directional strengths in some of 

the single tensor components, e.g., xc and w are well estimated 

from Txx and Txz. The mainly horizontal component 

combinations H1 and Tuv | Txy are ranked at a similar level to 

Tzz. In contrast, the purely horizontal quantities H2, Tuv and 

Txy rank much lower. These three components comprise just 

Txx, Tyy and/or Txy. The invariants I1 and I2 are ranked in 

between the higher ranked concatenated combinations and 

those discussed above. Both I1 and I2 have tightly clustered 

parameter rankings and are the two most highly ranked 

combined component quantities.  

 

In agreement with the information measure Θ (Pilkington, 

2012), Figure 2 shows that the concatenated components are 

the highest ranked, producing the smallest parameter error 

estimates. This demonstrates that when components are 

combined into a single quantity through multiplication and 

addition, it will not perform as well as if the same components 

were simply concatenated. For example, comparing H2 and 

the Txx | Tyy | Txy combination, they both contain the same 

(purely horizontal) components but provide very different 

error estimates, the latter being by far the more reliable. 

Component quantity Tuv | Txy is a mix of combination and 

concatenation, and falls between H2 and Txx | Tyy | Txy in 

terms of ranking.  

 

In this study, estimated parameter errors for an inverted model 

are used to measure the quality of a solution. This is not the 

only measure that could be used to assess the goodness of an 

inversion. Another useful gauge is how well the inverted 

model matches geological information, and whether certain 

known features are present in the inversion results. Adding 

more components to the data vector was also shown in a 

detailed study by Martinez et al. (2013) to improve inversion 

results when compared to known geology. 

 

CONCLUSIONS 
 

Using estimated parameter errors from parametric inversions 

allows for a quantitative ranking of tensor component 

quantities comprising single tensor components, combinations 

of components, and concatenations of components. 

Furthermore, linear inverse theory allows incorporation of the 

appropriate relative noise levels of the tensor components after 

noise reduction processing. Ranking of the estimated model 

errors from a range of model types shows that data sets 

consisting of concatenated components produce the smallest 

parameter standard deviations. For data sets comprising 

combined tensor components, the invariants I1 and I2 produce 

the smallest model errors. Combinations of the purely 

horizontal components Txx and Tyy perform the poorest. Of 

the single tensor components, Tzz gives the best performance 

overall, but those single components with strong directional 

sensitivity can produce some individual parameters with 

smaller estimated errors (e.g., w estimated from Txz).  
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