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INTRODUCTION 
  

The manual interpretation of geophysical images remains a 

very important method in exploration, and is one of the key 

means by which geological meaning is attached to the physical 

properties measured.  In minerals exploration aeromagnetic 

and gravity data are most commonly interpreted in this way, 

and we focus on those data types.   

 

Constrained qualitative interpretations are often extremely 

valuable for explorers to provide geological context under 

cover. However, to recognise their true worth it is important to 

map out, in some way, the level of confidence that exists in 

the interpretation.  

 

Several approaches are possible, including quite generic 

discussion on the confidence in interpretation (e.g. Aitken and 

Betts 2009, Aitken, et al. 2008), through attributing interpreted 

features with a qualitative “confidence factor”, through to 

more involved approaches using geostatistics, fuzzy logic, 

machine learning and information entropy (e.g. Knox-

Robinson 2000, Wellmann, et al. 2010, Yamamoto, et al. 

2012).  Here, we seek an intuitive and quantitative method that 

can be easily applied using readily available tools and minimal 

computing resources. 

 

 
Figure 1.  Aeromagnetic data in the sample area of the 

west Musgrave Province.  Bottom left inset highlights the 

differences in interpretation of Joly et al. (2013) in black 

and Smithies et al (2009) in white. Bottom right inset 

indicates source surveys, stitching order and flight line 

orientations. 

 

We separate interpretational confidence into “human-related” 

and “data-related” categories. The former category 

SUMMARY 
 

Geological interpretations of aeromagnetic and gravity 

images are highly subjective but are rarely accompanied 

by a quantitative confidence assessment, which is a key 

limitation on the usefulness of the results. This paper 

outlines a method with which the relative level of data 

richness can be assessed quantitatively, leading to an 

improved understanding of spatial variations in 

interpretational confidence. Simple rules were used to 

quantify the likely influence of several major sources of 

uncertainty. These were: 1) the level of geological 

constraint, using the local abundance of outcropping rock 

and the scale of geological mapping; 2) the 

interpretability of the data, considering the strength of 

edge-like features and the degree of directionality of 

these features; 3) data collection and processing errors, 

including gridding errors, and the influence of anisotropic 

line data collection on the detection of gradients. From 

these individual sources of uncertainty an overall data 

richness map was generated through a weighted 

summation of these grids. Weightings were assigned so 

as to best match the result to the interpreter’s perception 

of interpretational confidence. This method produced a 

map of data richness, which reflects the opportunity that 

the data provided to the interpreter to make a correct 

interpretation. An example from central Australia 

indicated that the data influences were preserved over a 

moderate range of weighting factors, and that strong bias 

was required to override these. In addition to providing a 

confidence assessment, this method also provides a way 

to test the potential benefits of additional data collection. 
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encompasses all prior knowledge, biases, preconceptions and 

inconsistencies that the human brings to the interpretation. 

These are somewhat understood (Bond, et al. 2007, Rankey 

and Mitchell 2003) but are hard to assess, and we leave this 

problem for future research. 

 

Data related confidence factors include all the components in 

the data that may act to enhance or detract from 

interpretational confidence. These include the data 

distribution, signal amplitude, noise/error etc. In contrast to 

the human influences, these are often easily quantified and the 

cumulative effects can be assessed using a numerical approach    

 

THE SAMPLE AREA 

 

The sample area is the west Musgrave Province, an area where 

the aeromagnetic data were recently reinterpreted for the 

purposes of prospectivity analysis (Joly, et al. 2013).  This 

area preserves a complex poly-deformational evolution 

(Smithies, et al. 2009) and this complex structuring is well 

imaged in the aeromagnetic data (Fig 1).  A key challenge 

therefore is to unravel this high-level complexity, but to do so 

without over-interpreting structure in ill-constrained areas. 

 

METHOD AND RESULTS 
 

As noted above, we seek to characterise data-related 

influences on interpretational confidence.  Conceptually, this 

can be thought of as estimating the opportunity the interpreter 

had to make a correct interpretation, rather than the 

correctness of the interpretation itself.  

 

Here we focus on geologically constrained aeromagnetic 

interpretation, and identify the following sources of 

uncertainty: 

 

1. The level of geological constraint. 

2. The interpretability of the gridded aeromagnetic 

data. 

3. Data collection and processing errors. 

 

  
Figure 2.  Geological constraint on the interpretation 

 

For geological constraint, we take the geological maps of the 

area, and assign each outcrop an outcrop quality factor (the 

OQF).  This OQF is based on factors such as the scale of 

geological mapping (1:100 000 vs 1:250 000), the age of the 

outcropping rock (Proterozoic vs Phanerozoic), and regions 

that are particularly well understood, for example due to 

detailed structural mapping (e.g. Mt Aloysius – MA (Fig. 2)).  

To provide a regional estimate, we then use a kernel density 

function (Silverman 1986) to estimate the combined influence 

of all outcrop within a certain radius, in this case 7.5 km (Fig. 

2) 

 

The level of interpretability of the gridded data is estimated 

considering two main factors.  Firstly, the amplitude of 

“features” – i.e. ridges and edges – is estimated using a 

combination of a variety of edge detection filters.  In this case 

we use the total horizontal gradient (Blakely and Simpson 

1986), the standard deviation of texture (Holden, et al. 2008), 

the TDX filter (Cooper and Cowan 2006) and the phase 

congruency filter (Kovesi 1999).  These are normalised to 

their 99th percentile, and combined through a simple weighted 

sum, to provide a feature strength map (Fig. 3) In this case 

equal weightings were preferred, but tests indicate the 

weightings are not especially influential. 

 

 
Figure 3.  Feature strength map 

 

We also consider the structural complexity of the 

aeromagnetic data, as poly-directional data are typically 

harder to interpret than mono-directional or non-directional 

data. We consider the level of data directionality as a proxy 

for complex structure. This is quantified using the orientation 

entropy approach of Holden et al (2012) based on the analysis 

of automatically picked structural elements.  For the sample 

area, we use 8 orientation bins, sufficient to separate ENE 

from NE, and a window size of 3 by 3 km, which avoided 

over-averaging while capturing enough elements to provide a 
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sound basis for the analysis (Figure 4). 

 
Figure 4.  Structural Complexity Map 

 

The final major component is data processing and collection 

errors. Here we focus on the gridding error, but also on the 

effect of anisotropic line-data collection in the imaging of 

gradients. 

 

Gridding error is established statistically through kriging the 

data and returning the statistical error in the kriged grid.  In 

this example, with fairly dense line data relative to the size of 

the region, the pattern of error varies quasi-linearly with the 

distance from the nearest line.  Error is up to 100 nT between 

200m spaced lines and 150 nT between 400m spaced lines. 

 

The anisotropic sampling of conventional line-data presents a 

further complication, in that the horizontal gradient in the data 

will be less than the true gradient where the flight line is not 

perpendicular to strike.  The observed gradient is given by the 

true gradient multiplied by the sine of the intersection angle. 

The effect of this can be assessed through computing the sines 

of the intersection angles between flight lines and the 

automatically picked structural elements, used previously in 

the orientation entropy calculation. We generate a grid for the 

mapping process by regionally averaging these point values  

within a certain radius of influence, in this case 2.5 km (Fig. 

5). Mostly, fairly high values are returned (mean = 0.8), with 

only a few poor areas (e.g. Murray Range). 

 

The final stage is to combine these individual factors into an 

overall map of data richness.  For simplicity, this can be 

achieved as a simple weighted sum, according to the following 

equation: 

 

  
Figure 5.  Line-anisotropy effect on gradient resolution 

 

data richness = 

 w1 * geological constraint  

+ w2 * (magnetic feature strength * sw1 - sw2*orientation 

entropy)  

+ w3* (anisotropy confidence * sw1 - gridding error * sw2) 

 

Weightings and sub-weightings within this scheme must be 

subjectively assigned, so as to match the final product to the 

interpreter’s perception of what was most influential in 

interpretational confidence.  The final data richness map is 

shown in Fig. 6   

 

In the case of the west Musgrave Province, the interpreter 

(Aitken) considered data interpretability to be most important 

(w2=0.5), with geological constraint (w1=0.4) being important 

also. Data processing errors were considered less important 

(w3=0.1) due to the regional scale of interpretation, however 

for more local work these would perhaps be more important. 

Within the data interpretability, feature strength dominated 

over orientation entropy (sw1=0.8 vs sw2 = 0.2) while in data 

processing, gridding errors were considered more important 

than anisotropy effects (sw1=0.4 vs sw2 = 0.6). 

 

CONCLUSIONS 
 

This method provides an easily applied method through which 

the influence of imperfect data on an interpretation can be 

assessed.  This provides several key benefits  

 

1. A guide to interpretation reliability for end users 

2. Encourages critical thinking on interpretational confidence 
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3. Allows optimisation of the level of detail in the 

interpretation 

4. Could assist in planning new data collection 

5. Allows the propagation of interpretational confidence into 

any derivative products.     

 
Figure 6.  Final data richness map  

 

This approach cannot account for human related influences, 

nor the complicated interplays between different data density 

in different data types that may lead to departures from the 

regional averaging.  Nonetheless, our testing found that the 

results were robust under quite strong changes to the 

weighting scales and that a significant bias was required to 

override the data influences.  
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