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INTRODUCTION 
  

Understanding of the Earth’s subsurface based on the 

interpretation of geoscientific data is a challenging task.  The 

complex natural environment needs to be predicted based on 

multiple datasets (geophysical, geological and geochemical) 

each with its own characteristics and limitations.  The data are 

often ambiguous, incomplete, inaccurate and of low resolution 

(Frodeman 1995).  There are a limited number of published 

studies on how geoscientists interpret their data.  Rankey and 

Mitchell 2003 carried out a study on six interpreters, designed 

to analyse the impact of interpretation and the uncertainties 

associated with it on seismic attribute analysis for the 

prediction of reservoir properties.  Another study by Bond et 

al. 2007 analysed the results of the interpretation of some 

seismic data.  In their study, a synthetic seismic image was 

interpreted by 412 participants with varying levels of 

experience and training.  Their results showed that only 21% 

of the participants successfully identified the three major 

faults present in the image and 23% identified the correct 

tectonic setting.  Rankey and Mitchell 2003 found that seismic 

interpretations are influenced by the interpreter’s biases based 

on previous experience, preconceived notions, types of data 

available, data quality and geological understanding, whereas 

Bond et al. 2007 claimed that prior knowledge had a greater 

influence.  In a study specifically focusing on mineral 

exploration, Wastell et al. 2011 studied decision uncertainties.  

They reported that variability in mineral exploration decision-

making is due to human predispositions such as rational 

thinking and cognitive closure. 

 

Unlike the studies summarised above, our research focuses on 

a more fundamental problem.  We seek to understand how 

interpreters interact with the data whilst interpreting, and its 

impact on the effectiveness and efficiency of the interpretation 

(Sivarajah et al. 2012a; Sivarajah et al. 2012b).  We monitor 

the human data interactions during interpretation using an eye 

tracker (ETS) that traces the eye gaze of the interpreter and 

using the electroencephalography (EEG) that captures the 

brain responses.  Participants with varying degrees of 

experience and expertise participated in these experiments 

(first experiment-fourteen; second experiment-eight).  We 

designed two experiments, where the task was to identify 

porphyry-style intrusive systems in magnetic data.   

 

For the first experiment participants performed two exercises, 

where the same magnetic image with multiple porphyry targets 

was presented in different orientations.  The data observation 

patterns are tracked in real-time using an eye tracker system 

(ETS) during the interpretation process.  Then, together with 

interpreter feedback, we assess the accuracy and efficiency of 

geological target detection within magnetic data for individual 

interpreters.  The results show inconsistencies in target 

spotting performance within and between interpreters and an 

improvement when data observed from different orientations.  

SUMMARY 
 

Geoscientific data interpretation is a highly subjective 

and complex task as human intuition and biases play a 

significant role.  Based on these interpretations, however, 

mining and petroleum industries make decisions with 

paramount of financial implications.  As a first step 

towards understanding and improving the interpretation 

process, we carried out two experiments to monitor the 

human-data interactions during the process of identifying 

‘targets’ (porphyry-style intrusive systems) within the 

aeromagnetic imagery.  This is achieved by capturing the 

eye gaze position using an eye tracker system and the 

brain responses using electroencephalography (EEG).   

 

The first experiment was intended to analyse the target 

spotting performance and the data observation patterns.  

For this experiment participants performed exercises, 

where the same magnetic image was presented in 

different orientations.  Some key findings include: 

inconsistencies in target spotting performance within and 

between the interpreters; an improvement performance 

when the data were viewed in multiple orientations; and a 

strong correlation between the target spotting 

performance and efficient (systematic) data observation 

pattern.  There was no correlation between success in 

identifying targets and the participants’ perception of 

their expertise.   

 

The second experiment was designed to identify the 

characteristics of the targets that are easier to detect using 

EEG.  For this experiment images with targets and 

without targets were presented in a rapid visual display.  

The analysis on the image characteristics based on the 

human visual attention model show a strong correlation 

between target spotting difficulty and dispersion of the 

visual attention.   

 

Key words: geoscientific data interpretation, 

interpretation variability, eye tracker, data observation 

pattern, brain responses.   
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The interpreter data observation patterns show a strong 

correlation between the target spotting performance and 

efficient (systematic) data observation.  In addition, there was 

no correlation between target spotting ability and the 

participants’ perceived expertise.   

 

For the second experiment the images with porphyry and 

without porphyry were presented in a rapid visual display.  

The neurological responses were obtained by capturing the 

EEG during this target spotting exercise.  The specific 

neurological response that corresponds to the target selection 

(P300 response) is used as a measure to identify the 

interpreter’s responsiveness or lack of responsiveness to the 

presented visual pattern.  We compare these responses to the 

spatial distribution of salient features within the same images.  

This technique allows us to quantitatively assess the 

relationship between interpreter’s target detection responses 

and the spatial spread of salient features within image.  The 

result shows the targets with lower dispersion of visual 

attention are easier to detect.  

 

METHOD AND RESULTS 
 

In this study participants’ eye gaze were captured using a 

mobile eye tracker available from Applied Science 

Laboratories and the EEG signals were amplified and recorded 

using the NuAmp amplifier and the SCAN Express software.  

At the beginning of each experiment the participants were 

seated in front of a display monitor at a convenient distance 

(from 60 – 100cm) and were then fitted with the ETS glasses 

and EEG head cap.   

 

Experiment 1 

 

14 participants with varying levels of experience and expertise 

participated in this experiment.  The experiment consisted of 

two exercises, both of which used the same magnetic image, 

but displayed in different orientations.  The intent was to 

understand the impact on interpretation of viewing the data in 

different orientations.  For the first exercise the image was 

displayed in a ‘normal’ fashion, i.e. with north at the top of 

the screen (Figure 1a), which will be referred to as the original 

image.  For the second exercise the image was rotated by 180º 

(Figure 1b), which will be referred as rotated image.  Both 

images were illuminated with a false sun located at the top of 

the screen, i.e. from actual north in the original image and 

actual south in the rotated image.  Participants were given 

three minutes for each exercise and had a 30 minute break, 

during which they were distracted with other tasks.  Subjects 

10 to 13 saw the rotated image first and all the other subjects 

saw the original image first. 

 

During the exercise, the participants were asked to press a 

keyboard button when a target was identified, while fixing 

their eye gaze at the target location.  We captured the data eye 

gaze movements during the target spotting task using the ETS.  

We also recorded the time of the target identifications by 

capturing the button click times.  Following the experiment all 

participants were asked to rank themselves (from 1 to 10) in 

their level of expertise for this task. 

 

Quantitative measurement of the target spotting performance 

requires knowledge of the ‘ground truth’ targets.  The survey 

area is very well explored area and has a number of known 

deposits, which could be used as the target set, but the number 

is limited and it does not include many of the magnetic 

anomalies which have the desired qualities.  Thus, for the set 

of ‘ground truth’ or ‘true’ targets for our analysis, we decided 

to also use the targets generated by a pattern recognition 

algorithm designed to identifying the magnetic responses of 

porphyry systems, which is known as the CET Porphyry 

Detection for Oasis montaj 2012.  The set of ‘true’ targets 

used to judge the accuracy of the subject’s interpretation is a 

combination of those derived by both methods (42 ‘ground 

truth’ targets).   

 
Figure 1.  Magnetic images used for the original (a) and 

rotated image exercise (b). 

 

Data was analysed based on the participant’s analysis of the 

original image, the rotated image, and the combination of the 

two.  The repeated identifications of the same targets were 

removed from the analysis.  Based on this information we 

quantified target identification performance by calculating 

Recall and Precision, defined as follows, 

Recall (R) = Nik / Nk 

Precision (P) = Nik / Ns 

Where, Nk is the number of targets in image (Nk = 42 ).    

Nik is the number of targets correctly identified by the 

participant.  Ns is the total number of targets ‘identified’ 

(without duplication) by the participant. 

 

We used two different eye gaze-based measures to quantify 

the data observation patterns.  These are the scan path length 

and scan path duration.  Scan path length is the total distance 

traced by the eye during the exercise (measured in pixels).  We 

also computed the mean scan path length between target 

identifications.  An equivalent temporal measure is scan path 

duration between target identifications.  These parameters are 

indications of the efficiency of the data analysis.   

 

Using the individual target spotting performances and the eye 

gaze profile data, we analyse the individual variability in three 

different aspects: target spotting performance, data 

observation patterns and impact of data observation from 

multiple orientations.   

 

Variability in target spotting performance: Figure 2 shows 

the target spotting performance of all 14 participants for the 

original and rotated image exercises and also both exercises 

together (combined exercise).  Recall ranges from 0.17 to 0.67 

with an average of 0.36 for the original image exercise and for 

the rotated image exercise it ranges from 0.10 to 0.43 with an 

average of 0.26 (Figure 2).  There is significant variation 

between the results from the different exercises as completed 

by each individual and between the performances of 

individual interpreters.  Precision calculations indicate all 

participants had relatively high precision (greater than 80%) 

except subject 1, 7 and 14 in original and rotated image 

exercises (Figure 3).  Interestingly, the level of self-assessed 

expertise did not correlate with participants’ performance in 

terms of target detection accuracy.  Here we use the outcomes 
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of the target identification exercise as a measure of expertise, 

referring to them as high achievers and low achievers. 

 

Impact of data observation from different orientations: Most 

of the participants (ten participants) performed better in the 

original image exercise than the rotated image exercise, 

regardless of the order in which the exercises were performed 

(subject numbers 10 to 13 performed the rotated image 

exercise first).  Four subjects obtained better performance in 

the rotated image exercise.  This shows the variability in target 

spotting performance based on the orientation of the data 

within each subject.  The important outcome from this 

component of the experiment is that orientation and/or 

direction of illumination does make a difference.   

 
Figure 2.  Recall versus subject number for three different 

exercises. 

 

 
Figure 3.  Precision versus subject number for three 

different exercises. 

 

Even though most of the subjects performed better with the 

original image there are some times missed targets, which 

were identified in the rotated image.  This is represented by 

the performance improvement obtained in the combined 

analysis (Figure 2).  Eight participants obtained higher recall 

in the combined case than the original image exercise, while 

others had no improvements (subject number 4, 6, 11 and 14), 

but in comparison to the rotated image exercise all of the 

participants had an improvement in the combined task.  

Average increase in the recall rate for the combined viewing 

over the original image exercise is about 20% and over the 

rotated image exercise is 81%.  Comparable precision rates 

(Figure 3) and the overall improvement in the recall rates for 

the combined exercise quantitatively shows that the 

geoscientific data interpretation performance can be improved 

by observing the data from multiple orientations during 

interpretation.   

 

Variability in data observation patterns: Data observation 

patterns differ significantly among subjects.  We computed the 

Pearson product-moment correlation to determine the 

relationship between different eye gaze measures and the 

target spotting performance (Recall).  The eye gaze measures 

used for this analysis are the mean scan path length and mean 

scan path duration.  Statistically significant strong negative 

correlation was obtained for the original image exercise and 

rotated image exercise between these eye gaze measures and 

the Recall (Table 1).   

 
Original image 

exercise (r) 

Rotated image 

exercise (r) 

Mean scan path 

length vs recall 
-.675* -.800* 

Mean scan path 

duration vs recall 
-.692* -.748* 

Significant at 0.01 (*) and 0.05 (**) levels; n = 14. 

Table 1.  Pearson product-moment correlation (r) between 

different eye gaze measures and the target spotting 

performance (recall) for the original image and rotated 

image exercises. 

 

Strong negative correlation between the mean scan path length 

and the recall indicates, as the performance increases the mean 

scan path length decreases, which means that high achievers 

observed the data more efficiently than the low achievers.  The 

negative correlation between the mean scan path duration and 

recall indicates the decision making difficulty increases 

(longer scan path duration) with the decrease in target spotting 

performance.  That is high achievers made the decisions 

quickly when compared to the low achievers.  Therefore these 

results quantitatively show a strong correlation between the 

target spotting performance and efficient data observation 

patterns.   

 

Experiment 2 

 

Eight participants with varying levels of experience and 

expertise participated in this study.  In the visual display, eight 

target images were repeated 10 times and 50 non-target images 

were repeated six times.  These images were shown in a 

random sequence, but the sequence was identical for all the 

participants.  Each image was shown for 1000ms with an inter-

stimulus interval of 1000ms.  User responses were also 

collected by requesting the participants to respond to the target 

images by pressing a key on the key board, as soon as they 

detect a porphyry (the target) in an image. 

 

A well-known image saliency analysis method proposed by Itti 

and Koch 2000 is used for this study.  In this model, the retinal 

input of the human vision system is first processed in parallel 

to generate a set of feature maps based on colour, intensity or 

orientation.  These maps are then combined at each location to 

generate a topographic saliency map which is then used to 

prioritise and select the salient region locations.  Only the 

features from this location are selected for further analysis. 

 

The expected dispersion of visual attention for each target 

image is measured using the saliency map output.  Two 

separate measures are used.  The first is the major axis length 

of the largest object within each saliency map.  The other is the 

dispersion of circular peaks within the saliency map.   

 

Interpreter target detection is evaluated by detecting the EEG 

signal that is associated with target detection; this is known as 
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the P300 response.  The P300 response is indicated by the 

positive deflection in the EEG signal around 300ms after the 

presentation of a target visual stimulus.  In this study we used 

the detectability of the P300 responses as a measure to 

quantify the saliency of the features within the images.  The 

ranking of the target images using the P300 responses is 

compared with the ranking of the target images based on the 

image saliency analysis.   

 

Captured EEG signals were pre-processed to minimise the 

artefacts present in the signals.  Ocular artefacts were 

minimised by applying blind source separation (BSS) and the 

other artefacts were minimised by filtering.  Brain responses 

corresponding to the presented images were obtained from the 

pre-processed signals by extracting an epoch (0 – 700ms) after 

the presentation of each image.  Based on these epochs the 

images were classified into images with porphyries and without 

porphyries using a support vector machine (SVM) (Sivarajah 

et al. 2012b).  Each target image was shown ten times, the 

target identification of each image for each subject was 

calculated.  These results were used to calculate the correct 

identification of each target image by the eight subjects.  The 

percentage of correct identification of each target image out of 

80 presentations (each target image repeated 10 times and 

presented to 8 subjects = 80 total presentations).   

 

The target images were ranked based on the percentage of 

correct identification of the targets (highest to the lowest) by 

all subjects using the P300 responses (Figure 4).  The target 

images also ranked based on the dispersion of saliency using 

major axis length of the saliency map (lowest to the highest) 

and the standard deviation of the positive peaks (lowest to the 

highest) within the salience image.  Statistically significant 

Pearson’s correlation coefficients were obtained between the 

ranking based on the P300 responses and the ranking based on 

the dispersion of saliency map (ranking based on the major 

axis length: 0.74; ranking based on the standard deviation of 

the positive peaks within saliency maps: 0.81).  This shows a 

strong positive correlation between the interpreter target 

detection and the low dispersion of saliency images.  This is a 

significant finding for two reasons.  This finding has 

potentially established a link between interpreter P300 

responses and dispersion of saliency.  The other significance is 

that it demonstrates a potential in using human attention 

model-based saliency measure to assess and optimize data 

display and enhancement methods.   

 

CONCLUSIONS 
 

In this study we presented the findings from two experiments 

to understand the geoscientific interpretation process.  Data 

observation patterns show a strong correlation between the 

target spotting performance and efficient (systematic) data 

observation pattern.  The target spotting performance results 

show inconsistencies within and between the interpreters and 

an improvement when the data were viewed in multiple 

orientations.  There was no correlation between success in 

identifying targets and participants’ perceived level of their 

expertise.  The analysis on the image characteristics based on 

the human visual attention model show a strong correlation 

between target spotting difficulty and dispersion of the visual 

attention.  Our findings are useful in identifying effective data 

display methods, which can provide a roadmap for the training 

of geoscientific data interpreters.   
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Figure 4.  Easy to detect targets to difficult targets (from left to right) based on the P300 responses. 


