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INTRODUCTION 
 

There are several factors that must be considered when 

choosing an airborne electromagnetic (AEM) system for a 

specific survey task.  These factors always include cost, 

availability and logistics.  However, the most important 

consideration is the ability of an AEM system to resolve the 

target(s) to be mapped. 

 

To date Geoscience Australia has tackled this later 

consideration in terms of "detectability" rather than the 

"resolvability", which are two distinct concepts.  We say that a 

target is detectable if the difference between the AEM 

response of the target and the background is sufficiently 

greater than the AEM system's noise levels.  Resolvability not 

only requires that the target's data anomaly be detectable, but 

that we can also estimate, with sufficient confidence, via an 

inversion procedure, the cause of the anomaly. 

 

Geoscience Australia is now addressing the resolvability 

question though a reversible jump Markov chain Monte Carlo 

(rj-McMC) inversion algorithm.  A 1D forward model code 

generates synthetic data for each AEM system under 

consideration.  This occurs for a suite of type-model scenarios 

that represent the expected range of situations to be mapped, 

and may include actual downhole conductivity logs.  The data 

are then inverted using the rj-McMC inversion which, 

importantly, uses independently estimated AEM system noise 

levels. 

 

The rj-McMC algorithm samples millions of models, possibly 

on independent parallel Markov Chains, that fit the data to 

within the AEM system's expected noise levels.  Analysis of 

the ensemble of models yields a robust estimate of the 

uncertainty of resolving the model at any particular depth.  It 

is a simple matter to then compare and contrast the results for 

each AEM system under consideration.  We also show how 

the method can be used to provide depth of investigation 

estimates. 

 

METHOD 
 

We use a software program for 1D rj-McMC inversion of 

AEM data developed at Geoscience Australia.  The 

methodology, previously described by Brodie and Sambridge 

(2012), was adapted from the 2D seismic tomography 

inversion work of Bodin and Sambridge (2009).  Similar 

techniques in the geophysical literature include Malinverno 

(2002) and Minsley (2012).  The software was also used in the 

inversion of an entire SkyTEM™ survey flown in Western 

Australia (Brodie and Reid, 2013, this volume). 

 

The rationale of the rj-McMC inversion method is to generate 

a large ensemble of models that fit the data to within the 

assigned noise levels.  The ensemble is generated using 

random perturbations of an initial model, and hence it is a 

Monte Carlo technique.  However, the perturbations are not 

entirely random.  Instead, they are generated using Markov 

chain sampling theory, which means that the ensemble is 

generated in such a fashion that the statistical distribution of 

the models in the output ensemble asymptotically converges to 

the true posterior probability distribution of the model 

parameters given the prior knowledge and the observed data.  

Then, by analysing the statistical properties of the output 

ensemble, insights into the uncertainty and non-uniqueness of 

the inversion results are realised. 

 

The reversible jump (rj) terminology arises from the fact that it 

falls into the relatively new transdimensional class of McMC 

methods (Green, 1995), in which the number of dimensions in 

the problem is not fixed.  This means that we do not 

presuppose the number of layers in our 1D conductivity 

model.  The mechanics of the algorithm is briefly outlined 

here. 

 

A feasible model domain, that is, a minimum and maximum: 

number of layers; depths of interfaces; and range of possible 

conductivity values; is defined.  A Markov chain, or possibly 

multiple independent chains, is initialised with a random 

model taken from the feasible domain. 

 

Then, in a sampling loop starting from the current model m, a 

new model m′′′′ is proposed in one of four possible ways: 

(i) VALUE-CHANGE - a layer’s conductivity is perturbed; 

(ii) MOVE - an interface is moved up or down; (iii) BIRTH - a 

layer is inserted; and, (iv) DEATH - a layer is deleted.  The 
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perturbations in each case are randomly selected from certain 

pre-set proposal probability distributions. 

 

The next step is to decide if the proposed model is accepted or 

rejected.  To do this, the prior probabilities of the current 

(p(m)) and proposed (p(m′′′′)) models are computed from any 

prior information.  Forward models are run and then the 

likelihood functions, which increase with decreasing noise 

normalized data misfit, of the current (p(d|m)) and proposed 

(p(d|m′′′′)) models, given the data (d), are computed.  Then the 

probability of the forward jump (q(m′′′′|m)) from the current to 

proposed, and reverse jump (q(m|m′′′′)) given the proposal 

distributions, are computed. 

 

The proposed model is then accepted and added to the end of 

the chain with probability 
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otherwise it is rejected and a copy of the current model is 

added to the end of the chain.  The process of accepting or 

rejecting models controls the sampling of the Markov chain.  

It ensures that the chain asymptotically converges to the true 

p(m|d), that is the posterior probability density of the model 

given the observed data. 

 

Each chain generates Ns models, including the burn-in period 

Nb that gives time for an acceptable data misfit to be achieved.  

After the burn-in, new models are added into a discretized 2D 

posterior probability histogram.  That is, for each discrete 

histogram depth-bin, the model conductivity is determined 

and the corresponding histogram conductivity-bin count is 

incremented.  This progressively builds up an image 

representation of the desired p(m|d).  Similarly, a 1D 

changepoint histogram is built up by incrementing all depth-

bins of the 1D histogram in which a layer interface falls. 

 

For the value-change move propositions, the sampling 

algorithm favours accepting models with high likelihoods (low 

data misfits) and high prior likelihoods.  For the birth and 

death propositions the acceptance probability is also a balance 

between the proposal probability, which encourages 

conductivity changes, and the difference in data misfit, which 

penalizes conductivity changes if they degrade data fit.  Also, 

given similar data fits, a proposed model has more chance of 

being accepted if m′′′′ has fewer layers than m, giving the 

algorithm a form of natural parsimony. 

 

At the conclusion of the sampling the 2D probability density 

histograms and the changepoint histograms are merged.  

Several statistics are then extracted from the histograms 

including the mean, mode, median, 10th, 50th, and 90th 

percentiles log-conductivity values in each depth bin.  Also 

the single most probable (best) model from all chains is saved.  

It is the distance or spread between the 10th and 90th percentile 

models that we use to make assessments about resolvability; 

the narrower the spread the better the resolution. 

 

EXAMPLES 
 

To carry out the resolvability analysis for a particular 1D 

geoelectric target and AEM system a 1D forward model is run 

for the geoelectric target for that AEM system in its nominal 

configuration. Then we invert the dataset using the rj-McMC 

algorithm.  Here we will show three examples that have been 

run for the SkyTEM508™ and TEMPEST™ systems.  In all 

cases we assigned a feasible model domain with conductivity 

limits from 0.001 S/m to 10 S/m, with up to 10 layers possible 

and a maximum interface depth of 200 m. 

 

The prior probabilities distributions for the number of layers 

and interface depths are set to uniform, and log-uniform on the 

conductivities (conductivity is parameterized in log).  Uniform 

priors are used to ensure our results are only being influenced 

by the raw resolving power of the AEM system itself, and not 

by artificial model constraints. 

 

To arrive at a robust estimate of resolvability, it is necessary to 

test a broad spectrum of models that satisfy the data.  Testing 

only those models with the same number of layers as the target 

model would have the propensity to derive an unrealistically 

optimistic resolving ability.  We achieve this by letting the rj-

McMC algorithm vary the number of layers. 

 

We do not add synthetic noise to the data because our noise 

model for the AEM system is taken into account during the 

inversion.  As noted earlier, the likelihood function depends 

on a noise normalized data misfit.  Consequently, all other 

things being equal, with increasing noise levels the sampling 

algorithm will automatically test a broader part of model space 

and hence the spread between the 10th and 90 percentile 

model will increase.  Assigning realistic noise levels is 

therefore a crucial part of the procedure. 

 

For the examples presented here we inverted the Z-component 

of the Low- and Super-High moments of the SkyTEM508™ 

data together (36 windows in total).  A noise model of 3.6% 

multiplicative noise plus a high altitude data-derived additive 

noise floor was used for each window.  For TEMPEST™ we 

inverted the X- and Z-component data together (30 windows 

in total).  A noise model of 2.3% (X) and 3.8% (Z) plus a high 

altitude data-derived additive noise floor was used. 

 

One million models were sampled on 16 independent Markov 

chains run in parallel for each model with a burn-in period of 

100,000 samples before samples are incorporated into the 

output histograms.  Each of the figures following contain the 

same style of plots, so they will be explained only once here.  

Panel (a) of each figure shows the convergence profile of each 

of the 16 Markov chains.  It can be seen that they always 

converge to the acceptable data misfit (horizontal red line) 

well before the burn-in period (vertical red line).  Note that the 

data misfits are not normalized by the number of data.  Thus 

the number of data, 36 and 30 respectively for SkyTEM508™ 

and TEMPEST™, are the acceptable misfits. 

 

In the first example the resolvability of a saline aquifer at 

around 60 to 80 m depth is tested.  The true geoelectric model, 

derived from real downhole resistivity log data, is shown in 

Figures 1b and 2b.  The grey shading on panel (b) depicts the 

posterior probability density distribution (i.e., the counts in 

the 2D output histogram).  The red lines show the position of 

the 10th and 90th percentile of the conductivity values across 

each row (depth-bin) of the histogram. 

 

It is clear from Figures 1b and 2b that both SkyTEM508™ 

and TEMPEST™ will both easily detect and broadly resolve 

the aquifer.  However, the details of the double-peaked shape 

of the conductivity bulge will not be resolved, because it 

cannot be distinguished from a broader and less conductive 

bulge.  Since the 10th and 90th percentile lines practically 
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overlie the true model in the top 60 m we can confidently say 

that part of the profile is very well constrained by the data of 

both systems. 

 
Figure 1.  SkyTEM508™ results for the saline aquifer 

example showing the (a) misfits on each Markov chain, (b) 

the true model, probability density histogram and 10th and 

90th percentile models, (c) changepoint histogram, and (d) 

histogram of the number of layers. 

 

Figures 1c and 2c show the changepoint histograms.  These 

histograms indicate the depth at which interfaces were most 

likely to occur in the models that were accepted into the 

Markov chains.  The grey shading and the red line show the 

same information, just in a different manner.  We can infer 

from these that the interface at the top of the saline aquifer 

around 60 m is resolved but that the bottom is not at all well 

resolved.  Further, we can infer from the relative widths of the 

peaks in Figure 1c and 2c, that SkyTEM508™ would 

probably resolve the depth better than TEMPEST™. 

 
Figure 2.  TEMPEST™ results for the saline aquifer 

example showing the (a) misfits on each Markov chain, (b) 

the true model, probability density histogram and 10th and 

90th percentile models, (c) changepoint histogram, and (d) 

histogram of the number of layers. 

 

Figures 1d and 2d indicate that a three layer model is the most 

probable.  One or two layers will not typically be able to 

explain the data.  However three layers is sufficient, which is 

consistent with our earlier observation that the double-peaked 

bulge will generally be resolved as a single broader but less 

conductive layer. 

 
Figure 3.  SkyTEM508™ results for the regional saline 

intrusion example showing the (a) misfits on each Markov 

chain, (b) the true model, probability density histogram 

and 10th and 90th percentile models, (c) changepoint 

histogram, and (d) histogram of the number of layers. 

 

The second example, whose geoelectric model is shown in 

Figure 3b and 4b, mimics a regional salt water interface at 

70 m depth and continuing to great depth.  These plots show 

that the conductivity above and below the interface at 70 m 

would be very well resolved by both systems.  The 

changepoint histograms also show that the depth of the salt 

water would also be well resolved. 

 
Figure 4.  TEMPEST™ results for the regional saline 

intrusion example showing the (a) misfits on each Markov 

chain, (b) the true model, probability density histogram 

and 10th and 90th percentile models, (c) changepoint 

histogram, and (d) histogram of the number of layers. 

 

The third example is a much more difficult task for AEM 

systems.  The geoelectric model, shown in black in Figures 5b 

and 6c, is a thin (5 m) clay layer with a 0.100 S/m 

conductivity embedded in a 0.030 S/m host at 20 m depth.  
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The grey shading and the 10th and 90th percentiles on 

Figure 5b gives a hint of an elevated conductivity at 20 m 

depth for SkyTEM508™, but it is not evident for 

TEMPEST™ in Figure 6b.  The clay layer is generally 

smeared as a much broader and less conductive layer than it 

really is.  The changepoint histograms do not show any 

evidence of resolution of the interfaces for either system.  

Furthermore the histograms of the number of layers (Figure 5d 

and 6d) show, especially in the case of TEMPEST™, that two 

layers is sufficient to explain the data. 

 
Figure 5.  SkyTEM508™ results for the clay layer example 

showing the (a) misfits on each Markov chain, (b) the true 

model, probability density histogram and 10th and 90th 

percentile models, (c) changepoint histogram, and (d) 

histogram of the number of layers. 

 

This is nice example of a geoelectric model that we would 

describe as detectible but not resolvable by these two systems.  

However, in this case we can be relatively confident that 

SkyTEM508™ would be the more suitable system. 

 
Figure 6.  TEMPEST™ results for the clay layer example 

showing the (a) misfits on each Markov chain, (b) the true 

model, probability density histogram and 10th and 90th 

percentile models, (c) changepoint histogram, and (d) 

histogram of the number of layers. 

 

For this example two additional traces have been plotted on 

panel (b), the mean model (green) and most probable or best 

model (blue).  The mean model is more or less a smoothed 

version of the true model, and probably contains the same 

amount of conductance. 

 

The best model for the SkyTEM508™ system is almost 

identical to the true model.  However, and most importantly, 

this is in no way any indication of resolvability, rather it is just 

one of about 14 million models that happened to satisfy the 

data.  Of course, since the anomaly is detectable above noise 

levels, at least with SkyTEM508™, this situation can be 

improved with conductivity constraints imposed during any 

suitable inversion procedure. 

 

CONCLUSIONS 
 

The rj-McMC inversion algorithm provides a powerful 

method for analysing the raw resolving power of an AEM 

system.  The underlying inversion is quantitative, but 

interpretation of the results is still qualitative.  The method 

robustly uses AEM system noise levels in the analysis.  

However, for the results to be worthwhile, the levels assigned 

to the noise need to be representative.  The method makes a 

clear distinction between detectability and resolvability. 
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