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INTRODUCTION 

 
The computational efficiency of seismic acoustic wave 

equation modelling can be greatly improved if the 
computational domain is decreased such that the domain is 

only as large as the region of interest.  Undesirable reflections 
from the boundary can interfere with desirable wave 

propagation effects in the model, hence the need for an 
absorbing boundary condition (ABC) to prevent energy from 

propagating back into the domain interior.  

 
Absorbing boundary techniques  

 
Specifying an absorbing boundary that is accurate, stable, 

efficient, broad-spectrum, easy-to-implement, and robust to a 
wide variety of incident wave angles and model types remains 

an active topic of research.  In recent years two major classes 

of effective absorbing boundaries have been developed, 
artificial boundaries and artificial layers.  In the artificial 

boundary regime, such as the ABC (e.g., Clayton and 
Engquist, 1977), the outer boundary of the model is modified 

to dampen incoming waves. In later formulations starting with 

Collino (1993), the absorbing boundary was extended to high-
order accuracy through the use of auxiliary variables.  In 

artificial layers such as the perfectly matched layer or PML 
(Berenger, 1994) waves propagating through a boundary layer 

are dampened by modified wave equations.  Since then 
numerous improvements of both methods have appeared in the 

literature.  Both types of methods were shown to be equally 
effective (Rabinovich et al. 2010). 

 

The ABC and PML approaches both have their advantages 
and drawbacks.  High-order ABCs can be implemented up to 

any desired level of accuracy up to the discretisation error.  A 
drawback of the PML is that given a fixed layer width it has 

no clear definition of convergence due to the mapping from a 
perfect analytical formulation to a discrete problem 

(Hagstrom, 2014).  Unlike the PML, high-order ABCs are 

complex to formulate at corners.  A high-order ABC doesn’t 
require tuning, whereas parameters in the PML, such as the 

layer thickness and damping coefficients, require tuning to 
effectively dampen waves for a given problem (Givoli, 2008).     

 
In this paper we test the accuracy of the double absorbing 

boundary (DAB) method.  The method aims to achieve the 
best of both ABC and PML methods while avoiding the 

drawbacks.  The result is an absorbing layer that aims to be 

effective with very few layer points.  We extend the DAB 
from its original one-dimensional formulation to three 

dimensions, and modify it to work with higher-order stencils.  
Using numerical tests we determine the spectral response of 

the double absorbing boundary with favourable results. 
 

The Double Absorbing Boundary method 
 

The Double Absorbing Boundary (DAB) (Hagstrom et al. 

2014) is a recent variant on the ABC technique. It implements 
a high-order ABC over a layer    with M interior cells, as 

seen in Figure 1.   

 
The incoming wavefield is read on the inner boundary    and 

a modified advection equation is used to create a secondary 

wave    that is propagated across the layer   .  High-order 

accuracy can be achieved by applying the modified advection 
equation again to    to generate    and so on, up to order 

N+1, where N is the order of the DAB method. In the outer 

boundary region    the secondary waves are added using a 

modified advection equation such that they attempt to cancel 
the incoming wavefield at the boundary.   

SUMMARY 
 
The double absorbing boundary (DAB) is a new high-

order absorbing boundary condition for the scalar 
acoustic wave equation. It suppresses scattered waves at 

the edge of a boundary layer in computational domain 
boundary by using destructive interference analogous to a 

noise-cancelling headphone. This method has advantages 
in that it addresses some of the shortfalls in existing 

boundary conditions, such as the need for tuning in 

Perfectly Matched Layers or complex formulations at 
corners such as in high-order absorbing boundary 

conditions. We extend the original formulation of the 
DAB to three dimensions and higher-order stencils. 

Through numerical simulation we test the performance of 
the DAB by comparison with a reflecting boundary. We 

find that the DABC is a broadband attenuator with a 

power attenuation of 20-30dB using only six boundary 
cells. Increasing the order of the method improves 

accuracy for wavelengths less than 10 cells, whereas 
increasing the layer width does not improve accuracy. 

The method shows promise as a robust and 
computationally efficient boundary condition for seismic 

applications. 
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Figure 1. Physical layout of the DAB applied to the right 
boundary of a 2D grid. Cancellation waves in variables 

       are generated at the inner boundary at    and are 

propagated across the layer   . The cancellation waves 

then cancel out the solution at the outer boundary   .   

 
 

The numerical implementation of a DAB is similar in many 

respects to the physical system employed by noise-cancelling 
headphones.  The DAB method can be implemented up to any 

order of accuracy within the discretisation error and does not 
require tuning or complex formulations at corners.  It also has 

a fairly straightforward implementation and is effective even 
with very thin layers. This offers the promise of a high level of 

computational and memory efficiency.  

 
 

METHOD AND RESULTS 

 
Our aim is to obtain an estimate of the performance of the 
DAB as a function of wavelength. In order to accomplish this 

we simulated a typical seismic source propagating into a 
constant velocity environment with DAB boundary conditions.  

We derive a power spectrum of undesirable reflections and 
compare the spectra to the power spectrum from reflecting 

boundaries. 

 
We extend the one-dimensional DAB method reported by 

Hagstrom (2014) to a 3D acoustic medium, and extend the 

method to high order stencils by extending the boundary 
region    to cover the extra boundary cells.  

 

Our source is a Ricker wavelet with a 25 Hz peak frequency. 
We use a cell width of 8 m and a timestep of 1.2 ms using a 

Courant number of 0.3.  To approximate a “reference 
wavefield” from an ideal, perfectly non-reflecting boundary, 

we propagate the source wavefield into a larger 2013 volume 
while saving an inner 1013 cube.   We then propagate the 

source into 1013 grids with DAB boundaries. The DAB on 

each boundary has total width of six cells, and we test it using 
a range of orders N=1,2,3,20. We use a second-order space, 

second-order time stencil to propagate the auxiliary variables 
over the boundary layer, and an eighth-order space, second-

order time stencil to propagate the wavefield over interior 
cells. The wavefield is evolved within each 1013 grid until any 

reflections from the boundary meet again in the centre at t = 
0.4 s. 

 

We obtain a “residual wavefield” at each time step by 
subtracting the reference wavefield at each timestep.  A power 

spectrum of the residual wavefield is computed by Fourier 
transform and binning. For each boundary type we average 

over power spectra from the final 17 time steps and divide the 
result by the averaged power spectrum from the reflecting 

boundary residual wavefield.  In Figure 2 we show the 

resulting attenuation from each test. We find that the DAB 
serves as a broadband attenuator, and realises attenuation 

between 20-30 dB for all seismic wavelengths between 2 and 
40 cells (equivalent to 16-320 m wavelengths for this test). 

Remarkably, this result was achieved using only one cell in 

the internal layer    (six cells in total), and shows promise 

that the DAB is a computationally efficient absorbing 

boundary.  PML methods are expected to attain higher levels 
(80 dB+) of power attenuation (Katz, 1994), but at the cost of 

more boundary points.  In future work we will look at how the 
DAB compares to recent PML formulations. 

 
As Figure 2 shows, increasing the order of the DAB method 

makes a difference to the attenuation of wavelengths smaller 
than 10 cells.  The difference between the lowest and highest 

order DAB methods for wavelengths smaller than 10 cells is 

less than 10 dB.  
 

 
Figure 2. Attenuation of the DAB as a function of order N 

and seismic wavelength.  The entire width of the boundary 
region (including boundary cells) is only six cells wide. 

 

 
An increase in the DAB layer width shows no improvement in 

attenuation. In Figure 3 we plot the power spectra from waves 
encountering a DAB boundary with the order N=1 and 

number of interior layer cells M=1,2,3,20. At small layer 
widths we need a negligible difference in attenuation. For 

large layer widths where M=20, there is a significant reduction 

in attenuation. This is presumably due to the low order 
accuracy of propagating cancellation waves across the DAB 

layer. 
 

 
Figure 3. Attenuation of the DAB as a function of M, the 

number of interior cells in the DAB layer.  The order of 

the method is kept at N=1. Increasing the number of 
interior layer cells has a negative effect on the attenuation, 

presumably due to limitations of the second-order 
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algorithm for propagating cancellation waves across the 

layer.  
In Figure 4 we plot slices of the 3D wavefields as they 

propagate into the boundary regions. In the left column is the 
wavefield interaction with the reflecting boundary at times 

t=0.24 and t=0.4.  The right column shows the wavefield 
interaction with the DAB boundary (M=1,N=3). As seen in 

the plot in the bottom right corner of Figure 4, the DAB 
boundary exhibits minor corner reflections around 10% of the 

amplitude of the incoming wave. Possible solutions to this 

problem will be discussed in future work.  
 

 

CONCLUSIONS 
 

We test a new absorbing boundary condition that combines the 
best aspects of traditional boundary methods. To test the 

method we propagate a Ricker wavelet source into different 

DAB implementations and compare the residual reflections 
from each boundary with the residual from a reflecting 

boundary.  We found that the double absorbing boundary is a 
good broadband attenuator with a 20-30 dB decrease in 

reflected power. Higher levels (80 dB+) of power attenuation 
are expected in tuned PML methods. In the near future we 

expect to compare the DAB with recent PML formulations 
using a similar analysis. 

 

Tests show that increasing the power of the method shows a 
(<10 dB) increase in attenuation for shorter wavelengths. 

Increasing the width of the DAB layer appears to have no 
significant effect at smaller layer widths and shows a negative 

effect for larger layer widths. We suspect this is due to the 
accuracy of cancellation wave propagation across the layer. 

We also observed minor corner reflections from the DAB 

boundary.  In forthcoming work we hope to address these 
spurious reflections and test the performance of the DAB and 

the latest PML methods using heterogeneous models. 
 

In conclusion, the DAB method performs well in attenuating 
reflections given a limited number of layer cells.  Given that 

the method also does not need tuning it shows promise as a 
robust and flexible boundary layer for use in seismic 

applications.  
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Figure 4. Slices of the 3D wavefield as it interacts with the boundary. In the left column is the wavefield encountering a 
reflecting boundary at 0.24 seconds (top) and 0.4 seconds (bottom). In the right column is the wavefield encountering a DAB 

boundary with order N=3 and M=1 interior cells in the DAB (six layer cells in total).  
 

 


