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INTRODUCTION 
 

Exploring for kimberlite with various remote sensing methods 
typically calls for high resolution imaging owing to the small 

scale of pipes and their signatures.  Airborne gravity 
gradiometry can deliver this capability (Barnes, 2011) and 

sees growing consideration in programs.  Among its benefits 
include: i.) aircraft motion being common-mode rejected thus 

the GPS-limit does not apply and short wavelength gravity 
signals are acquired, ii.) geo-registration errors having only a 

second-order influence on measured gradients versus a first-

order influence for gravity surveys, and iii.) high coverage 
rates without ground accessibility problems. 

 
With gradiometry survey in-hand the interpreter scrutinizes 

data at a fine scale to identify and accredit each anomaly with 
an underlying kimberlite pipe or not, then ascertains 

confidence levels for each decision.  One thus hopes to make a 
binary decision, though ambiguities and weak signals are often 

assigned a less desirable third outcome that may be loosely 

described as “too difficult to decide.” 
 

PATTERN RECOGNITION FRAMEWORK 

 
Discriminant analysis can aid the interpretation process.  
Linear projections applied here aim to attenuate gradient data 

content lying in the unwanted clutter subspace (signal induced 

by terrain and nominal subsurface geologic variations, plus 

instrument noise) while amplifying content lying in the target 
subspace (signal induced by kimberlite pipes).  The overlap of 

these two subspaces directly relates to the difficulty of the 
detection problem.  At one extreme if the two subspaces do 

not intersect the detection is trivial; at the other extreme if the 
subspaces are wholly coincident the detection problem may be 

impossible.  Using gravity gradients to detect pipes is between 

these two extremes making acceptable detection challenging, 
but workable. 

 
A No Kimberlite (NK) class is defined and typified by the 

data ensemble XNK comprising boxcar-windowed sections of 
gravity gradient data xdens collected above nominal terrain and 

geologic variations (Figure 1), plus added noise xinstr owing to 

the gradiometer instrument 
 

 , , , ,:NK NK j NK j dens j instr jX x x x x    

 
Each data window of XNK is a member of class NK.  Ideally, 

the ensemble is very large with every anticipated terrain, 

geologic setting, and instrument noise represented.  Similarly, 
a Kimberlite Pipe (KP) class is defined and typified by the 

data ensemble XKP comprising data from windowed sections 
placed above pipes causing gradient anomalies xpipe 

superposed on terrain and geology-induced background 
gradients, plus instrument noise 

 

 , , , , ,:KP KP k KP k dens k instr k pipe kX x x x x x     

 
A scalar feature is extracted from each member by projecting 

associated data along a common unit direction a.  This is 
implemented via dot product operator y = a·x, which 

condenses each member’s original data dimension to a scalar 
value.  Each of the two classes is subsequently defined also by 

their ensembles of these scalars or feature populations 

 

 , , ,:NK NK j NK j NK jY y y a x    

 , , ,:KP KP k KP k KP kY y y a x    

 
The notion of extracting scalar features from data is not unlike 

“bump finding” when visually examining data.  Here, 
however, a judiciously chosen projection a can amplify 

differences between the two classes helping to make one 
population distinct from the other when overlaid as histograms 

on a real number axis (Figure 2).  A simple threshold detector 

is effective if the two classes are significantly distinct from 
one another as the figure suggests. 

SUMMARY 
 

A modelling and pattern recognition-based approach is 
applied to processing airborne gravity gradient data for 

kimberlite exploration.  The carrot-like bodies with low 
density crater facies that typify kimberlite pipes are 

particularly amenable to this treatment. 
 

Results for small and medium-sized pipes buried deeply 

beneath nominal geologic clutter are promising.  Details 
regarding various error rates provide valuable input to 

exploration programs and the framework can include any 
data type. 

 
A three-class problem is formulated to address the case of 

false alarms.  A first example is worked for low density 
shallow depressions that closely mimic gravity images of 

pipes, providing insight to what is needed from a survey 

fidelity standpoint to effectively mitigate false alarms. 
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Figure 2:  Overlaid histograms of significantly distinct 
classes.  Feature values greater than a threshold of 0.5 

belong primarily to the class shown with lighter shading. 
 

Classes are distinct if their populations have small intra-class 
spread but large inter-class separation.  An effective way to 

minimize intra-class spread while maximizing inter-class 

separation is to solve for a unit direction a giving the 
maximum separation-to-spread ratio (Sb/Sw) defined by 
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The numerator aligns a with the difference between class 

means giving an image similar to that of kimberlite pipes, but 
the denominator avoids aligning a with strong noise, which is 

evident on writing the population variances as a sum of noise 

components with strengths λ j and unit directions v j 
 

   
2

1/2T T T
KP NK j j

j

a a a V V a a v        

Shallow depressions filled with low density sediment are 
strong noise components that can closely mimic the gravity 

image of a kimberlite pipe.  For such cases the projection 
aligns with more subtle class differences, which may be too 

subtle to note by visual inspection, and requiring state-of-the-
art gradiometer fidelity for registering.  The solution to J 

* is 
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EXAMPLE KIMBERLITE PIPE DETECTION 
 

The preceding discussion assumes large data ensembles that 
are labelled, wherein for each data window the presence or 

absence of pipes is known and data is assigned to the proper 
class and a projection is found.  Labelled ensembles are 

generated in lieu of actual field data. 

 
Voxets with fractal density distributions are used to forward 

model a large number of mock surveys.  The vertical gradient 
Gzz is used exclusively throughout this study.  All 

gradiometry surveyors can derive this data product from their 
particular gradiometer systems.  The vertical gradient also 

seems somewhat favoured in literature perhaps owing to its 
maintaining spatial coincidence with underlying features 

(similar to how reduction to pole is favoured for viewing mag 

data).  The scale of Gzz anomalies is commensurate with field 
data reported elsewhere (e.g. Hatch, 2004).  Spectral character 

of gradients varies on a per survey basis through the fractal 

density generator giving coarse to fine Gzz textures (for 
reference, the data image of Figure 1 exhibits moderate Gzz 

texture). 
 

Pipes are modelled as inverted cones similar to (Allen, 2001) 
and then divided into crater, diatreme, and hypabyssal facies 

depth zones.  Density anomalies are assigned to each zone 
relative to a homogeneous reference value (Table 1), guided 

by values reported in (Power, 2007).  Focus here is on 

moderate and small pipes of roughly 6 and 2 hectare, 
respectively, with burial depths ranging from just a few meters 

to 100 m. 
 

Feature Density anomaly, g/cm3 

Fractal background 
geology variations 

−0.15  to  +0.15 

Crater facies −0.30  to  −0.10 

Diatreme facies Gradated to join adjacent zones 

Hypabyssal facies −0.10  to  +0.15 

 
Table 1:  Ranges of density anomalies of various modelled 

features. 
 

The synthetic data ensembles are processed in a training phase 
to determine an optimum projection a as outlined above, 

which is then used to extract the scalar feature populations 
from both classes giving overlaid histograms similar to Figure 

2.  A threshold is swept along the real axis while tallying 

classification errors at each value.  Detection and false alarm 
rates are plotted for each threshold value as a receiver 

operating characteristic (ROC) curve (Figure 3).  Having 
decided an acceptable false alarm rate (i.e., how often one 

thinks a pipe exists at a particular location when in fact it does 
not) the ROC curve quickly conveys the associated detection 

success rate. 

 
Before applying the projection to actual field data to help 

discover pipes, it is tested against independent data ensembles 
in a testing phase.  This phase applies the projection already 

in-hand to previously unseen geologic settings and pipes while 
tallying errors for each threshold value.  These ROC curves 

are then overlaid with the ones obtained during training to 
verify performance stability (Figure 3).  Projections can also 

be used to filter survey data (Figure 4).  Equally important to 

clearly showing pipe presence, the filtered data does not 
suggest pipes for the many visually pipe-like anomalies in the 

unfiltered survey data. 
 

THE THREE CLASS PROBLEM 
 
As a first-cut at constructing and training against an ensemble 

of structured non-pipe features that cause gradient anomalies 
mimicking those of pipes, a False Target (FT) class is added 

comprising shallow depressions filled with low density 

sediment.  Class FT is defined and typified by the data 
ensemble XFT comprising boxcar-windowed sections of 

gravity gradient data xdens collected above nominal terrain and 
geologic variations, plus added noise xinstr owing to the 

gradiometer instrument and the signal induced by the shallow 
depression filled with low density sediment, xshal depress 

 

 , , , , ,:FT FT m FT m dens m instr m shal depress mX x x x x x     
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Figure 3:  ROC curves for shallow and deep burials of 
small and medium pipes from the training (blue traces) 

and testing phases (green traces) of the classifier design 
show good agreement. 

 
Two projections are found for this three-class problem by 

maximizing a generalized separation-to-spread ratio similar to 

that previously shown for the two-class scenario.  The feature 
space is now two-dimensional, i.e., two features are extracted, 

one per projection, versus a single scalar being extracted from 
each class member.  The notions of intra-class spread and 

inter-class separation also carry over. 
 

The signals xshal depress for each member of class FT comprise 
the forward-modeled Gzz gradient owing to an instance of a 

deformable template of a shallow depression (Table 2). 

 

Attribute Range 

Diameter at top of depression 150 to 400 m 

Depth 20 to 100 m 

Depth of burial 0 to 20 m 

Skew (horizontal offset of bottom as 
fraction of total depth) 

0 to 0.5 

Density contrast -0.17 g/cm3 

Edge profile Varied 

 

Table 2:  Characteristics of modelled shallow depressions. 
 

Sharing a very similar shape and scale, the anomalous gradient 
signals induced by the shallow depressions are very difficult to 

visually distinguish from those induced by kimberlite pipes.  
However, if the gradiometry instrumentation and survey 

fidelity are sufficient to register these differences, then by 

following the framework outlined above two projections are 

found that isolate and amplify these subtle differences in an 

attempt to make the features extracted from the three classes 
mutually distinct. 

 
Figures 5 and 6 show the resulting feature populations for 

shallow and deep burial of small and medium pipes obtained 
during the training and testing phases.  Decision curves are 

sketched to show the possible trade of false alarm rate for 
increased detection rate.  The curves are drawn the same for 

both phases, showing robustness of the feature extractions.  

The blue decision curve favours higher detection rate at the 
expense of absorbing more false alarms.  The red decision 

curve favours fewer false alarms at the opportunity cost of 
missing some buried pipes. 

 

 
 

  
 

Figure 5:  Feature populations for the three-class problem 

with shallow burial of small and medium-sized pipes. 
 

As one would expect, classes are less distinct for the deep 
burial scenario than for shallow burials.  However, the 

sketched decision curve suggests the majority of small and 
medium pipes would be found with some moderate false alarm 

rate incurred. 

 

CONCLUSIONS 
 

Preliminary results of new gravity gradient processing 
methods suggest 98% of shallow pipes and 88% of deeply 

buried pipes might be discovered with only 1 in 10 false 
alarms incurred if pipes exist in nominally unstructured 

geologic settings, i.e., free of specific structured anomalies 
whose gradient signals closely mimic those of pipes.  The 

development is extended to a three-class problem by 

constructing and training against an ensemble of shallow 
depressions that cause gradient anomalies mimicking those of 

pipes.  Results clearly show how measurement fidelity relates 
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to class distinction and subsequent detection success.  Adding 

more geologic expertise and actual field data will enhance the 
overall approach to the point one could confidently reduce this 

approach to practice.  Other extensions include adding context 
dependent classification, since pipes tend to occur in clusters.  

A large return is expected by processing multiple data types 
within this framework, including context dependency to 

acknowledge physical relations between observables, e.g., 
correlations between resistivity lows and density lows. 
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Figure 1:  Example scene void of pipes. A window is placed at multiple 

locations to retrieve exemplars of vertical gravity gradient data induced 
by background geology and residual terrain effects. 

 

 

 
 

Figure 4: A survey image with many ambiguities (top) and its filtered 
image revealing six small and six medium pipes regularly placed to the 

left and right halves of the image, respectively. 
 

 

 

 
 

 
Figure 6:  Feature populations for the three-class 

problem with deep burial of small and medium-
sized pipes. 


