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INTRODUCTION 
  
Construction of reservoir models that are both geologically 

and geophysically realistic is of great importance for example 
when we want to use 4D seismic data for reservoir monitoring 

and characterization, and production forecasting with flow 

simulators. Initial reservoir models are typically built using the 
static data including well logs, core measurements, and 

baseline seismic surveys. These models are then updated in a 
history matching process to honour dynamic reservoir data 

over production time. (e.g. historical production data and time-
lapse seismic data). When we include 4D seismic data in the 

reservoir history matching process, it is essential that synthetic 
seismic data modeled from the initial static reservoir model 

closely matches the pre-production seismic data (e.g. Lumley 

and Behrens, 1998; Dupin et al., 2011). Without this initial 
match, it would be unreasonable to match any time-lapse 

seismic data with reservoir simulation models. From a 
mathematical point of view, history matching is essentially a 

highly underdetermined and nonlinear inverse problem to infer 
reservoir properties from the historical data.  According to the 

definition of nonlinearity (Eq. 1), a small perturbation in the 
initial model may cause a considerable difference in the 

output. Thus, in the 4D seismic history matching, it is vital 

process to ensure that the static reservoir model honours both 
initial geological and geophysical data, since it acts as a 

starting point for the subsequent history matching process. In 
other words, if the reservoir model does not honour the 

seismic data, how one could expect the history matched 
models to estimate the future performance of the reservoir 

accurately. On the other hand, if one could obtain a model 
which is tightly conditioned to seismic data, it is most 

probable that at least one of the several possible scenarios for 

static and dynamic modeling has been achieved. 
 

 (     )   (  )  (  )                                 (Eq.1) 

 
The methodology discussed in this paper involves generating 

reservoir models by optimization of multiple objective 
functions; including seismic data matching. Our ultimate goal 

is to generate geologically and geophysically consistent 
reservoir models to optimally initialize and hence accelerate 

the history matching process.  In the proposed approach, we 

try to achieve the best compromise models for multiple goals 
in terms of geological knowledge, geophysical data and 

connectivity information through a single optimization run.  
We present a new approach based upon a multi-objective 

optimization algorithm (e.g. Singh et al., 2008) for this 
purpose. 

 

A multi-objective optimization problem can be defined as 

finding a vector of decision variables  ⃗  [          ]
  

which optimize a vector of objective functions  ⃗( ⃗)  
[  ( )   ( )     ( )]

  subject to p equality constraints of 

  ( )               and the m inequality constraints of 

  ( )                where n is the number of decision 

variables and k is the number of the objective functions. The 
restrictions imposed by the constraints define a feasible region 

within the search space (   ), for which any     yields a 

feasible solution. The vector  ⃗ gives an optimal solution 

which is often non-unique (Singh et al., 2008). Inversion 
problems with two or more objective functions suffer from 

difficulties in choosing the proper weights for each term in the 
weighted summation of the objective functions; and hence the 

optimal solution is a function of the chosen weights. Turning 

these inversion problems into population-based techniques and 
taking advantage of the dominance concept is beneficial for 
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handling such multi-objective optimization problems (An 

2004). 
 

MULTI-OBJECTIVE RESERVOIR MODEL-

SEISMIC MATCHING LOOP 
 
Our proposed approach consists of two steps: First, the 

relevant problem domain knowledge and prior information 
(geology, geophysics, rock physics, petrophysics and 

engineering data) are integrated to generate an ensemble of 
starting models through geostatistical simulation techniques. 

Second, a population-based multi-objective optimization is 

designed and implemented to perform the reservoir model- 
seismic matching loop process. 

 
 

PROOF OF CONCEPT ON A TEST MODEL 

 
We present a test of our approach using a 3D synthetic object-
oriented reservoir model. We create a reference (true) 

reservoir lithology model, consisting of 38.5% channel sand 
and 61.5% shaly sand facies via object-based modeling in 

such a way that the channel sands create three potential flow 
units (Figure 1). We construct six pseudo-well trajectories at 

pre-defined positions within the reservoir 3D framework. We 

calculate the P-wave impedance volume for the reference 
litho-facies model, using a petroelastic model, designed based 

on theoretical and experimental rock physics relationships. 

 
 

Figure 1: Reference litho-facies model. 
 

 

For an efficient reservoir model seismic matching loop, the 
choice of objective functions is vital. In this study, we define 

three objective functions for litho-facies modeling and two 
objective functions for porosity modeling. For both litho-

facies and porosity modeling, the first objective function 
accounts for the mismatch between the inverted and simulated 

seismic impedance data in a least-squares sense. The second 
objective function for litho-facies modeling measures the 

mismatch between litho-logs and the extracted facies 

indicators from the simulated models at well locations, and for 
porosity modeling it measures the mismatch between the 

porosity logs and the modeled porosities at well locations. The 
third, as an image-based objective function, accounts for the 

mismatch between the connectivity information derived from 
geologic-based simplified images of the reference and 

simulated seismic impedance datasets. This objective function 
is only defined for litho-facies modeling.  

 

In defining the objective function-3 for litho-facies modeling, 
we rely on the notion that amongst a huge volume of seismic 

data, the most important information is contained in just a few 
regions and the remainder is either subject to noise and 

uncertainties, or is related to regions which are not critical to 

the reservoir static and dynamic modeling process (Derfoul, et 
al, 2012). For this reason, we design a workflow to define an 

adaptive objective function which improves the seismic match 
between the observed and simulated data, captures the main 

features observed in the seismic data, and recovers static 
connectivity based on observed seismic and well data.  

 Lithofacies modeling 
 

Once we have defined the three objective functions and 

selected the evolutionary stochastic optimization parameters 
such as population size, initial population members, cross-over 

and mutation fractions, we perform the petro-elastic multi-

objective optimization.  Figure 2 shows how solutions move 
towards the Pareto optimal region in the objective function 

space during generations. Since in the population-based 
MOPs, the number of objective functions is considerably less 

than the number of model parameters, plotting solutions in the 
objective space rather than model space, is a useful quality 

check of the model solutions. This feature of MOP is an 
efficient tool in our proposed reservoir model to seismic 

matching loop by allowing for the evaluation of accuracy, 

non-uniqueness and uncertainty of the results.  

 

Figure 2: Solutions in the objective function space, for 

litho-facies modeling. 
 

To highlight the performance of this three-objective 
optimization in the reservoir model seismic matching loop, the 

applications of single-objective, bi-objective and weighted-
summation of the objective functions are also tested. Figure 3 

summarizes the results in terms of the average misfit error of 
the obtained model solutions with the base reservoir litho-

facies model. We can see that the average misfit error is 

33.5% when comparing the initial reservoir models (generated 
by the constrained geostatistical simulation) with the reference 

model. When applying single-objective optimization using 
obj-1, obj-2 and obj-3 separately, the average misfit error of 

33.5% reduces to 17.6%, 24.8% and 24.5%, respectively. The 
applications of the weighted summation of Obj-1 and Obj-2 

with different weights show that there is no considerable 

reduction in the mismatch. In addition, our analysis shows that 
applying bi-objective optimization (Obj-1 and Obj-2) slightly 
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decreases the average misfit error of the resulting model 

solutions. Finally, the figure shows that application of three-
objective optimization approach considerably reduces the 

average misfit error of the resulting model solutions, from 
33.5% in the initial reservoir models to 9.7% in the obtained 

models. This means that there is 23.8% improvement in the 
updated models.   

 
Figure 3: Average misfit errors for lithofacies modeling.  

 
 Porosity modeling 

 
For porosity modeling we perform the bi-objective 

optimization, while the first objective function is the 
seismic term and second objective function is well log 

term. Figure 4 shows the evolution of the objective 

functions for this bi-objective optimization problem for 
different generations (iterations). The final set of model 

solutions falls in the Pareto region and shows a 
considerable reduction in the objective function misfits. 

 

 
Figure 4: Solutions in the objective function space, for 

porosity modelling. 
 

A performance metric is designed to measure the extent of the 

convergence to the reference data (optimal Pareto solutions). 
In this metric, minimum Euclidean distance between each of 

the estimated solution and true solution is computed. The 
average value of these distances is used as a measure of 

convergence performance. When the metric takes the value of 
zero, means that all the obtained solutions lies on Pareto 

optimal solution. The smaller the mean value of performance 

metric is an indicator of better convergence toward true 
solution. The comparison of the mean values of this metric for 

the initial porosity models and the final sets of porosity 
models show 42% improvements in the porosity estimation 

after 300 generation. In figure 5a, the porosity histograms of 
reference model and average realization of the initial models 

and in figure 5b, the porosity histograms of the reference 
model and average realization of the final sets of models after 

bi-objective optimization are shown. It is evident that the 

porosities obtained by our proposed bi-objective optimization 
approach have much better match with the actual reference 

porosity model.  

 
 

Figure 5: (a) porosity histograms of reference model and 

mean realization of the initial models and, (b) porosity 

histograms of the reference model and mean realization of 
the final sets of models after bi-objective 

 
 

FIELD DATA EXAMPLE 
 

The Stybarrow field is located in the Exmouth sub-basin of the 

Carnarvon Basin, offshore Western Australia. The 
approximate water depth over the field location is 800 m. In 

the Stybarrow structure, oil is trapped in the high quality 
sandstones of the Macedon Formation. The intersection of the 

E-W and NNE/NE trending normal faults develop a triangular 
oil trap. Top, base and bounding-fault seals are provided by 

siltstones and claystones of either overlying or underlying 
geologic formations (Ementon et al. 2004, Hill et al. 2008). 

 

A complete set of well logs at four wells, and a set of three 
migration angle stack seismic volumes, were available for this 

study. Rock physics analysis using elastic well logs reveals 
that P-impedance, Vp/Vs and density are the best seismic 

elastic attributes to discriminate different facies classes in the 
studied reservoir. Therefore, we performed simultaneous 

elastic parameter inversion using near, mid and far angle stack 

volumes for Stybarrow field. The prestack inversion process 
generates volumes of seismic elastic attributes. In Figure 6 

cross-sections of the inverted density and Vp/Vs around well 
no.1 are shown. 

 
In this field example of multi-objective reservoir model-

seismic matching loop, we concentrate on creating facies-
based reservoir models. A number of different facies have 

been identified in the Stybarrow reservoir. However, high net-

to-gross values along with small variations in petrophysical 
properties within the facies led us to simplify the reservoir into 

a Net and Non-Net facies system.  
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Figure 6: (a) Inverted density, and (b) inverted Vp/Vs. 

 

The first and second objective functions measure the 
mismatch between the inverted and synthetic Vp/Vs ratio and 

P-impedance seismic data volumes, respectively, in a least-
squares sense. This ensures the resulting models are 

constrained to match the seismic data. The third (image-based) 

objective function measures the mismatch between 
information derived from geologic-based image interpretation 

of the seismic data.  This ensures that the resulting models are 
constrained by interpreted geologic features and patterns.   

Figure 7a shows the average of the initial reservoir model 
realizations, and Figure 7c shows the average of the final set 

of optimal models after applying the multi-objective 
optimization. To understand the improvements in the final 

models, the corresponding connected volumes of Net facies 

for each of the average initial and final models are shown in 
Figures 7b and 7d respectively. Evidence from dynamic 

production data collected at Stybarrow such as interference 
tests, injection tracers, reservoir bottom-hole pressure and 4D 

seismic (Hurren, et al. 2012) indicates that the connected flow 
units are better represented in the reservoir models after the 

multi-objective optimization, whereas the initial geostatistical 

reservoir models do not correctly represent the known 
reservoir connectivity. 

 

CONCLUSIONS 
 

We have introduced a new approach for the reservoir model 
seismic matching loop by combining geostatistical simulation 

and multi-objective optimization.  It is used to improve static 
reservoir model estimation by simultaneously integrating 

multiple datasets including well logs and seismic data. We 

designed a test case with a multi-objective optimization 
problem in order to estimate reservoir litho-facies and porosity 

models. Qualitative and quantitative analysis of the results 
shows an improved match between the estimated model 

solutions (the best compromise model solutions respect to the 
defined objectives which exist on the Pareto front) and the true 

reference model.  We also use it to improve reservoir models 
for an Australian field by simultaneous integration of seismic 

data, geologic information and well logs acquired at the field. 
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Figure 7: (a) Average of initial facies models before optimization, 

(b) connected volumes of Net Facies in average of initial models, 

(c) average of final facies models after optimization, and (d) 

connected volumes in average of final facies models after 

optimization (which match dynamic production data estimates of 

connectivity). 
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