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INTRODUCTION 
 

Estimating the oil and gas saturations can reduce costly 

drilling of un-productive reservoirs. Over the years, 

several studies showed the advantage of relating the 

geophysical attributes to rock properties to improve the 

prediction of the reservoir properties (Hilterman, 2001). 

In this framework several techniques are available; some 

are based on the deterministic approaches, while others 

involve the use of statistics to mitigate the 

simplifications introduced by rock physics models 

(Bachrach, 2006; Dell’Aversana et al., 2011). 

 

Many examples using only seismic inversion attributes  

such as acoustic impedance (AI), Vp/Vs ratio, Poisson’s 

ratio and density, have been discussed in the literature 

(Barclay et al 2008).  Other authors studied the integration 

of seismic attributes (e.g., acoustic impedance, Vp/Vs) 

with EM attribute, mainly the resistivity model, which is 

obtained by controlled-source electromagnetic (CSEM) 

inversion, (Gao et al., 2012; Chen and Dickens, 2009; 

Chen et al., 2007; Giraud et al., 2013). The benefits of 

using electrical resistivity attribute within an 

interpretation workflow was shown by different studies 

(De Stefano et al., 2011; Miotti et al., 2010), which 

emphasizes the importance of integrating different 

geophysical attributes to improve interpretation.  

 

To achieve this objective we developed a novel 

technique to estimate the petrophysical model in terms 

of porosity and water saturation. The proposed method 

performs the petrophysical joint inversion (PJI), pixel 

based, of acoustic impedance and electrical resistivity 

models, through formal Bayesian estimation, assuming 

Gaussian probability density function for model 

parameters and input data. In this framework, rock 

physics models are involved as forward models to form a 

proper link between data input (AI and resistivity) and 

the petrophysical parameters, porosity and water 

saturation, (Carcione et al., 2007; Schön, 1996).  
 

METHOD AND RESULTS 
 

Constitutive equations 

According to the rock cross property concept introduced 

by Carcione, (Carcione et al., 2007; Dell’Aversana et al., 

2011), for integrating heterogeneous measurements, we 

must define some constitutive equations that link rock 

properties with well-log measurements, Figure 1. In this 

example we are assuming isotropic media. 

 

 

Figure 1: Cross properties, conceptual scheme. 

 

Many rock physics models are available and their 

efficacy depends on the particular lithology of the 

sediments (Schön 1996). To predict the compressional 

velocity in homogeneous, isotropic, elastic media we 

consider the relation: 

SUMMARY 
 

Reservoir characterization objectives are to estimate the 

petrophysical properties of the prospective hydrocarbon 

traps and to reduce the uncertainty of the interpretation. In 

this framework, we present a workflow for petrophysical 

joint inversion of seismic and EM attributes to estimate the 

petrophysical model in terms of porosity and water 

saturation. This study realizes the joint inversion within the 

probabilistic structure provided by the Bayesian theory. 

The algorithm is applied to a real hydrocarbon exploration 

scenario to evaluate its contribution to the interpretation 

phase. 3D volumes of estimated porosity and saturation, 

show how the joint inversion of acoustic impedance and 

electrical resistivity can provide a quantitative description 

of the reservoir properties and with it a measure of 

uncertainty, which is consistent with the petrophysical 

model and observations.  
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where   is the effective shear modulus of the porous 

rock. To predict this value we use the Krief model (A is 

an empirical parameter, 3 is the most common value): 
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s  is the shear modulus of the mineral making up the 

rock and ɸ represents the rock porosity.  

The term  represents the composite density of the bulk 

that is defined by the following volumetric average 

(three-phase fluid): 

 ggoowws SSS   )1( , 

 

In the previous formula the suffix ‘w’ indicates water, 

‘o’ is oil, ‘g’ is gas, and ‘s’ represents the solid phase. 

The term KG is the effective bulk modulus of the 

saturated rock, defined by the Gassmann model: 
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where: 

 

 Ks : bulk modulus of the mineral making up the 

rock 

 Km : effective bulk modulus of the dry porous 

rock predicted, in this workflow, by the Krief 

model (A=3 is the most common value): 
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 Kfl : effective bulk modulus of the fluid phase 

predicted, in this workflow, by Wood’s formula 

(three-phase fluid): 
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To address the electrical resistivity the well known 

Archie model, (second formulation), is involved: 

mn
ww SRR 

  , 

 

where 

 

 R: effective resistivity of the saturated rock 

 Rw: water resistivity. 

 Sw : water saturation. 

 m: cementation exponent. 

 n: saturation exponent. 

 
Previous rock models represent the constitutive equations that 

are able to constrain the inverse problem by providing a 

petrophysical model that conforms to the physics of the 

phenomenon. 

 

Input data 

As input data we consider: 

 

 The seismic attributes such as acoustic impedance, 

density and Poisson’s ratio models.  

 The resistivity model resulting from the CSEM 

inversion.  

 

All models are defined within the same grid in order to have the 

same number of cells (Figure 2). Because the CSEM inversion 

produces a low-resolution model with respect to the seismic 

model, we mitigate this limitation exploiting the transverse 

resistance principle, (Constable 2010, Metha et al 2005). The 

approach is the following; first, we need to derive the resistive 

anomaly within the model resulting from the CSEM inversion 

as: Ranomaly=RCSEM-Rback. Where Rback is a background 

resistivity model, which is generally defined based on well logs 

and/or geological information. In the second step, by applying 

the transverse resistive principle to the Ranomaly, we bound the 

resistive anomaly within the geological boundaries that are 

supposed to contain hydrocarbon.  

 

 

Figure 2: Input data, acoustic impedance, and resistivity 

model after the transverse resistance processing. 

 

MODELING AND INVERSION 

 
For modeling, we follow Tarantola’s approach on inverse 

problems, (Tarantola, 2005). We start from the non-linear 

relation linking model parameters to the input data: 

  

)(mgd  , 

 

We distinguish the vector m that defines the unknown model 

parameters in the model space, (porosity and water saturation 

in the bi-phase configuration), while the d vector represents the 

input data, (acoustic impedance and electrical resistivity 

values). According to the Bayesian theory, the state of 

information on the model parameters is described by the prior 

model mprior and by CM, the covariance matrix that takes into 

account its uncertainties. The uncertainty associated with the 

observed data is captured by CD, which is the data covariance 

matrix. We assume Gaussian probability distribution for both 

model parameters and data. The solution of the inverse 

problem is obtained through an iterative procedure that 

linearizes the forward model around the current model mk and 

obtains a new model mk+1. At every iteration, the Jacobian 

matrix Gk, which contains the derivatives of the forward model 

equation with respect to the current model parameters, is 

numerically updated. The closed-form solution is:  



Petrophysical Joint Inversion  Miotti,F., Guerra,I., Ceci,F., et.al..   
 

 

 

  1111
1


  d

T
kMkd

T
kpriork CGCGCGmm      

 

     priorkkk mmGdmg  , 

 

The iterative algorithm stops when: 

Lmm kiki ,.....,1          i,1,   , 

 

Where L represents the number of cells forming the 

petrophysical model and ε is the predefined value that specifies 

a stopping criterion. Finally, we compute the posterior 

covariance matrix of the model CM,post, which describes the 

uncertainty of the solution as: 

  111
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The sensitivity analysis and regularization of the inverse 

procedure are both detailed by Dell’Aversana et al., (2011).  

The entire workflow is depicted in Figure 3. 

 

 

Figure 3: PJI inversion procedure. 

 
Example   

To evaluate its performances, the PJI technology was tested on 

a real exploration case. The input data consists of seismically 

derived acoustic impedance, Poisson’s ratio and density and 

CSEM derived electrical resistivity attributes.  

The CSEM inversion provides the vertical and horizontal 

resistivity models, but since the PJI workflow assumes 

isotropic media, we chose as resistivity model, only the vertical 

component, because, for this survey, it is the most informative 

one. Seismic and CSEM inversions are carried out separately in 

their native domains, and consequently, different regularizations 

were applied to produce the acoustic impedance, Poisson’s 

ratio and density model in the seismic domain and the 

resistivity model in the electromagnetic domain. 

 

The objective of the PJI is to describe quantitatively the 

petrophysical properties of a potential reservoir in terms of 

porosity and water saturation distribution within the 3D model. 

We apply the workflow within a selected area where both 

seismic attributes and resistivity models show anomalies as 

evidence of a potential reservoir. Guerra et al., (2013) explains 

how the joint interpretation for this survey was carried out, and 

we exploit their results to set up our analysis. The joint 

anomalies are depicted in Figure 4. Here we notice a low 

Poisson’s ratio and high resistivity values in the region of the 

seismic reflector.    

 

 

Figure 4: Seismic data co-rendered with Poisson’s ratio 

and vertical resistivity (contour lines). Both models show 

evidence that supports the presence of a potential gas 

reservoir. Image courtesy of Schlumberger. 
 

Because well logs are not available in this area, we calibrated 

the prior rock model through the analysis of the scatter plots 

explaining the relations between the seismic attributes and the 

resistivity, (e.g., Poisson’s ratio versus resistivity), and 

between the seismic attributes themselves, (e.g., acoustic 

impedance versus Poisson’s ratio), (Hilterman, 2001). To test 

the contribution of the electrical resistivity in determining the 

petrophysical model, we carried out two different test involving 

as data input: 

 

 Acoustic impedance and density model 

(Petrophysical Inversion - PI) 

 Acoustic impedance and electrical resistivity model 

(Petrophysical Joint Inversion - PJI) 

 

The Poisson’s ratio was not directly involved as data input 

because it is less sensitive to porosity respect to the acoustic 

impedance and density attributes. In contrast, his contribution 

was determinant to characterize the rock model in the previous 

calibration phase. We performed both tests and compared the 

results. The comparison is shown in Figure 6, which shows the 

porosity and water saturation models on the horizontal z-slice 

at a depth of -967 m, (Figure 5). The first row depicts the result 

of the petrophysical inversion while the second illustrates the 

result carried out from the petrophysical joint inversion. Both 

porosity estimates A and, D are consistent because this rock 

property is mainly derived by the AI attribute. In contrast, the 

comparison between the saturation estimates (B and C) exhibits 

the role of the resistivity attribute to discriminate fluids, (e.g., 

water from gas/oil).  Specifically 

 

 Model B is a “smooth” water saturation model 

because density and AI attributes are weakly 

sensitive to fluid substitution water-gas. For this 

reason the model shows several values close to the 

prior water saturation, here set to 0.5.  

 The model C highlights the high sensitivity of 

resistivity with respect to resistive fluids such as oil 

and/or gas. The joint inversion strongly reduces the 

amount of water saturation corresponding to the 

resistive anomaly as evidence of a possible presence 

of gas saturation that is the preliminary assumption 

we are interested to support, (Guerra et al., 2013).  

 

Since that the inverse algorithm performs a local optimization, it 

is important to define a representative prior model for the 

investigated area. Finally, we notice in the previous comparison 

the feature P, which shows high water saturation in the B model 

and the opposite trend in model C. We could deduce here a 

possible presence of oil, which under certain assumptions is a 
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resistive fluid with elastic properties similar to those of water. 

Because no well logs are available in this survey area, we 

assess the reliability of the results based on a cooperative 

interpretation based on scatter plot analysis. Having well logs in 

the survey it is possible to reduce the final uncertainty through 

both a more accurate calibration of the starting rock model and 

a more detailed assessment of the final results.  

 

  

Figure 5: Petrophysical joint inversion, mesh cube 

(transparent purple color) and porosity model on z-slice at 

-967m. Image courtesy of Schlumberger. 

 

 
Figure 6: Model comparison, petrophysical inversion vs 

PJI. A and B are the porosity and water saturation model 

resulting from the petrophysical inversion. D and C are 

the porosity and water saturation model resulting from 

the PJI. C model shows the contribution of EM attribute 

to discriminate the water content from resistive fluids 

(e.g., oil and/or gas). 

 

CONCLUSIONS 
 

The study presented in this paper shows the main feature of the 

algorithm we developed to get a robust estimation of the 

petrophysical model, starting from the seismic and resistivity 

attributes. The Bayesian theory is exploited to build the kernel 

of the inverse algorithm while the prior rock model is built 

based on realistic assumptions carried out after a scatter plot 

analysis. The results presented here evidence the contribution 

of the joint inversion of seismic and EM attributes to derive a 

quantitative description of the petrophysical model. Further, 

this study supports the role of the CSEM technology, which is 

an additional tool to be used in conjunction with seismic 

attributes to reduce uncertainty in prospect generation on West 

Loppa. Once prospects are identified, (with complimentary 

structural, stratigraphic and DHI’s with CSEM resistivity 

indicators) the PJI is used as a quantifier for reservoir 

attributes.  In order to improve this technology tests are in 

place to exploit jointly all the information available from the 

seismic and resistivity attributes with the goal of being able to 

derive a more reliable petrophysical model. Finally, it is highly 

recommended to use well log data to better calibrate a 

representative rock model for the survey area, in order to 

improve the final result. 
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