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INTRODUCTION 
  
Inversion of gravity gradient data has become a commonly 

accepted method to simultaneously interpret multiple 

components, resulting in a density model of the subsurface. 
Given the lack of depth information in potential field data, 

algorithms have employed various strategies to overcome 
these inherent difficulties. One such approach is to constrain 

the inversion through incorporation of prior geologic 
information (Guillen et al., 2008; Lelièvre et al., 2009; 

Ailleres et al., 2010). A reference model provides a versatile 

way to incorporate known structure, source depths, and known 
physical properties into inversion. A second avenue for 

incorporation of prior information is through a weighting 
function. The weighting function provides a mechanism to 

incorporate uncertainty in the reference model or other 
subsurface constraints (Oldenburg and Li, 2005). 

 
While a reference model or weighting function can be created 

from borehole or other geologic information, we instead focus 

on the use of the gravity gradient data itself. From the gradient 
data, depth to anomalous source estimates can be obtained. In 

the context of the magnetic method, estimating the depth to 
source has been widely explored. Much of the work has 

likewise been extended to the gravity method, and more 
recently gravity gradiometry. In particular, Zhang et al. (2000) 

and Mikhailov et al. (2007) illustrate variations of Euler 

deconvolution to estimate source locations from gravity 
gradient data. Beiki and Pedersen (2010) perform an 

eigenvalue decomposition and use a least squares method to 
estimate the source location, assuming point mass sources. 

Building upon the approach by Beiki and Pedersen, we 
similarly utilize an eigenvector-based method to generate an 

accumulation volume representing the depths to anomalous 
masses (Wedge, 2013). Using such an accumulation scheme, 

the assumption of point mass sources is no longer necessary 
and linear or otherwise shaped features can be identified.  

 

From the accumulation volume, a reference model or 
weighting function can be constructed and used as a constraint 

in the inversion of the gravity gradient data. We demonstrate 
the advantages of incorporating additional information on 

source depths derived from gravity gradient data. 
 

SOURCE DEPTH ESTIMATES 
 
An accumulation volume representing probable depths of 

anomalous masses is generated using an eigenvalue 

decomposition of the gravity gradient tensor (Wedge, 2013). 
The tensor is diagonalized yielding three eigenvectors and 

three eigenvalues. The eigenvector (  ⃗⃗⃗⃗   used to create the 

accumulation volume is that corresponding to the largest 
eigenvalue (  ). As Pedersen and Rasmussen (1990) show, the 

eigenvector    ⃗⃗⃗⃗   has the unique property of pointing towards 

the anomalous centre of mass. This property is exploited in 

order to create a representative depth volume.  
 

First, the subsurface area is discretized into rectangular 
prisms. The data are band pass filtered at pre-defined 

frequencies. Each frequency band are then used to generate an 

accumulation volume as follows. For each data location, the 
eigenvector,   ⃗⃗  ⃗, is calculated and projected from the 

observation point through the extent of the discretized volume. 

The value of each prismatic cell that the projected vector 
passes through is increased by one. The eigenvector projection 

is carried out for all observation locations, resulting in an 
accumulated volume representing the number of times a   ⃗⃗  ⃗ 
eigenvector pointed towards each prism for that particularly 

frequency band of the data. 
 

The accumulation volumes from each frequency band are then 

summed resulting in a volume where higher cell values 
represent probable locations of mass anomalies. Separating the 

data into frequency bands reduces the effect of noise since the 
higher frequency bands can be left out of the final 

accumulation volume. During the accumulation process, a 
radius of influence is defined so that all prisms within the 

radius of   ⃗⃗  ⃗ likewise have their accumulation values increased 

by one. This also helps to mitigate the effect of noise by 
accounting for error in the eigenvector direction. 

 

Before moving onto inversion, we make a few remarks about 
estimating the depth to source method summarized above. 

Estimating source depths based on frequency bands, gives 
equal weight to both shallow and deep sources. Given the 

sensitivity of gravity gradient data to shallow sources, the 
ability to identify sources at depth can be advantageous. 

Increasing the accumulation value by one likewise ensures 

both shallow and deep masses are represented. 

SUMMARY 
 
Efficiently extracting the maximum amount of 

information from gravity gradient data is challenging. 

Interpretation often takes place in either the data domain 
or model domain. Here, we present a workflow that 

utilizes two interpretation techniques that can result in 
better characterization of the subsurface. Using a method 

that estimates depth to source, we obtain a depth volume 
of estimated source locations. The depth volume is then 

used to constrain inversion of gravity gradient data in the 
form of a reference model and 3D model weighting. We 

demonstrate that this combined approach improves the 

ability to recover sources at depth. 
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INVERSION 
 

We use the 3D potential-field inversion algorithm developed 
by Li (2001a) and Li and Oldenburg (2003) to invert the 

gravity gradient data. For the construction here, we specify a 
right hand Cartesian system where x is northing, y is easting, 

and z points vertically down. The algorithm assumes a set of 
contiguous rectangular prisms each with a constant density 

contrast. The inverse solution is obtained using Tikhonov 
regularization by minimizing a total objective function, 

 

min            (1) 

subject to         ⃗⃗⃗         

 

 

where μ is a regularization parameter,    and    are data 

misfit and model objective functions, respectively. Lower, 

     , and upper,      , bound constraints can be imposed on 

the recovered density contrast. The reference model (  ) and 

weighting functions (ws,wx,wy,wz) are present in the model 
objective function    as shown in equation 2. 
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Inclusion of a reference model (  ) penalizes the recovered 

model as it deviates from the reference model. In regions of 

high uncertainty the weighting functions (ws,wx,wy,wz) can be 
assigned low weights so as to not penalize the model if it 

deviates from the reference model. Low weighting values for 

the derivative weighting functions wx, wy, and wz allow for the 
presence of high gradients in those regions. 

 
The accumulation volume described in the preceding section 

can be considered a representative likelihood volume for 
source depth location. Two ways of incorporating the 

information encapsulated within the accumulation volume into 

inversion are through the reference or weighting functions. 
Next, we illustrate the advantages of incorporating the 

accumulation into inversion.  
 

SYNTHETIC EXAMPLE WORKFLOW 
 
We illustrate the workflow through a synthetic dataset. Six 

components of the gravity gradient tensor are contaminated 
with 2 Eo Gaussian noise and shown in Figure 1. The 

anomalies represent the sources listed in Table 1. The 

subsurface is discretized into 10 m cubes in order to generate 
the accumulation volume. The radius of influence is set to 100 

m. The accumulation volume is then converted to a coarser 
cell size of 50 m cubes for use in inversion. 

 
Prior to inverting, we denoise the data using an equivalent 

source technique (Li, 2001b). Due to space constraints, only 
the denoised Tzz component is shown in Figure 2, with 

labelled source anomalies corresponding to Table 1. 

 
 

Label Shape Δρ (g/cc) Depth (m) 

    A Block +0.20 500 – 900 

B Sheet +0.15 0 – 1000 

C Sphere +0.30 50 – 350 

D Cone -0.40 150 – 350 

E Tunnel -2.70 3 – 7 

Table 1: Index of source bodies generating data shown in 
Figure 1 and labelled in Figure 2. 

 

 
Figure 1: Synthetic gravity gradient data resulting from 

five geometric sources described in Table 1. Simulated 
altitude is at 400 m. 

 
Figure 2: Denoised Tzz with anomaly sources labelled 

according to Table 1. 
 

The data are first inverted without inclusion of a reference 
model. The density contrast within the recovered model is 

allowed to vary between -5 g/cc and 5 g/cc in all cases. Depth 
slices through the recovered model are shown in the first row 

of Figure 4. In what follows, we call this unconstrained model 

the base model for comparison purposes. 
 

Reference model from accumulation volume 
 

In order to incorporate the depth estimates obtained from the 
method described above, the accumulation model must be 

converted into a representative density model. The constructed 
density model can then be used as a reference model in 

inversion. We first implement various accumulation-density 

conversions then invert the gravity gradient data with the 
constructed reference models. 

 
Three reference models are generated by normalizing the 

accumulation values to three different density ranges. The 
three ranges are selected so the reference model density 

contrasts are either too small, too large, or entirely positive. 

The accumulation values range from 0 to 20412. The 
accumulation volume is normalized to lie in the density range 

(-0.095,0.186) g/cc for Reference Model A, which is too 
small. The density range for Reference Model B is (0,1) and 
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Reference Model C is (-0.095,1). The accumulation value 

range for Reference model C uses only non-zero values for 
normalization; the minimum accumulation value is positive.  

 
A depth slice at 300 m through each reference model is shown 

in Figure 3 plotted on a colorscale of (-0.1,0.4) g/cc. Here, the 
most clearly defined feature lies in the centre of the models 

(corresponding to the sphere). The calculated Tzz response for 
each reference model is also given in Figure 3. Comparing the 

response calculated from the reference models to the denoised 

Tzz in Figure 2, it is evident that the reference model is an 
inaccurate representation of the actual density distribution.  

 
Slices through the recovered models from inverting the data 

using each reference model are shown in Figure 4. Using 
Reference Model A (row 2), the block, sheet, and sphere are 

identified with positive density contrast. The continuity of the 

sheet feature begins to fade just after 600 m, with the edges 
being recovered until a depth of roughly 800 m. The positive 

density range imposed by Reference Model B (row 3) imposes 
too much structure around the source bodies. Reference Model 

C (row 4) smears the sphere and block source well beyond the 
known extent. 

 
In the unconstrained recovered model, the buried sphere and 

depth extent of the sheet are not well resolved. Using the 

accumulation volume as a reference, helps the inversion to 
resolve the buried sphere and constrains the width of the sheet 

at depth. The negative density feature to the south of the sheet 
is present in the recovered models in the near surface, but is 

not necessarily distinguishable from the average recovered 
background values. The embedded tunnel feature is much 

smaller than a single cell, and is not expected to be resolved. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

Figure 3: Forward modelled Tzz and depth slice at 300 m 
for: (a)-(b) Reference Model A; (c)-(d) Reference Model B; 

(e)-(f) Reference Model C. In the three reference model 

images, the colourbar ranges from -0.1 to 0.4, where cells 
larger than 0.4 are red and cells lower than -0.1 are blue. 

Weighting function from accumulation volume 

 
Next we utilize the accumulation volume as a 3D weighting 

function. In the model objective function of equation 2, four 
weights (ws,wx,wy,wz) can be adjusted. The accumulation 

volume is first normalized to range from 0 to 100. The 3D 
weighting function is obtained by taking one divided by the 

normalized accumulation values and assigned to the smallest 
model 3D weighting function, ws. For simplicity, the 

weighting functions and length scales (Lx,Ly,Lz) for the 

gradient terms are set to be small so that the smallest model 
term dominates. Slices through the recovered model using the 

3D weighting function are shown in row five of Figure 4. The 
last row of Figure 4 shows the recovered model using both the 

3D weighting function and reference model A. 
 

Using just a weighting function further distinguishes that there 

is a source at depth in the northern region of the model. The 
model in general has higher values than the base model. The 

width of the sheet feature is tightened at 600 m depth and the 
buried block is better recovered as compared to the base 

model. Using a reference model along with the model 
weighting results in structure at depth. The combined 

constraints do not necessarily improve upon the two separately 
recovered models using only a reference (Figure 4, row 2) or 

only 3D weights (Figure 4, row 5). 

 

CONCLUSIONS 
 

The three reference models illustrate that regardless of the 
density range (too large, too small, positive only) utilizing the 

accumulation volume assists in resolving source bodies at 
depth. The recovered density contrast values are affected by 

the reference model, and the conversion of accumulation to 
density should ideally utilize known densities in order to 

appropriately scale the volume. Incorporating the 

accumulation volume depth information in the form of 3D 
weights overcomes the need to convert to a density model. As 

a 3D weighting function, the accumulation volume 
significantly increases the ability to recover sources at depth. 
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Figure 4: Recovered model depth slices for: unconstrained inversion (row 1), inversion with reference model A (row 2), 
inversion with reference model B (row 3), inversion with reference model C (row 4), inversion with 3D weights (row 5), 

inversion with 3D weights and reference model A (row 6). All  models are visualized with the same colourscale, where cells 
less than -0.1 are blue and cells greater than 0.4 are red. 


