Imaging complexity in the Earth – Case studies with optimised ray tomography

Zhijiang Luo
ION Geophysical
2105 CityWest Blvd, Suite 900
Houston TX 77042-2837
zhijiang.luo@iongeo.com

John Brittan
ION Geophysical
Integra House, Vicarage Rd
Egham UK TW20 9JZ
john.brittan@iongeo.com

Edward Lewis
ION Geophysical
578-586 Murray Street
West Perth WA 6005
ed.lewis@iongeo.com

SUMMARY

In the past 10 years, the resolution of tomographic solutions has seen a continuous increase because of evolving sophistication in methodologies and technology. A vital issue in the data domain is accuracy and density of residual move-out picks that are used to derive tomographic velocity-model updates. A new automated method allows for precise tracking of accurate residual move-out on pre-stack depth-migrated gathers and consequently the fast determination of dense, high quality travel time residuals for seismic tomography. The determination of small-scale anomalies ultimately leads to flatter pre-stack depth-migrated gathers and consequently better-focused structural images.

Key words: Seismic, Ray, Tomography, Residual, Move-out

INTRODUCTION

Ray-based migration velocity analysis is well established as a key component for estimating accurate P-wave velocity models for depth-imaging projects (Stork, 1992; Jones, 2003; Woodward et al., 2008). Since its adoption, the effectiveness of ray-based tomography has improved significantly as a result of both increasing computing power and innovative acquisition technology. On the data side, for example, dense volumetric picking has replaced the original horizon-based schemes, leading to a massive increase in ray illumination (Hardy, 2003; Woodward et al., 2008). The availability of wide-azimuth data in the past 10 years has further expanded model illumination in structurally complex regions, resulting in much more accurate models.

TTI anisotropic tomography has become routine in areas of complex geology, and the recent introduction of orthorhombic anisotropy has now been successful for explaining azimuthal residual move-out (RMO) variations that are poorly reconciled with TTI models (Li et al., 2012). On the inversion side, a wealth of a priori information (e.g., well logs) can now be integrated readily into the scheme with the aim of reducing the model null space of the inversion and helping to produce more geologically compliant subsurface models (e.g., Clapp et al., 2004).

Interestingly, one area that inherently affects the resolving power of tomography but has received less attention is the representation and picking accuracy of RMO. The common practice is to use a one- or two-term parametric form of representation to describe residual-migration depths and to apply some sort of automated scanning to generate spatially dense sampling of those depths (e.g., Jones, 2003; Woodward et al., 2008). But while simple parametric forms of picking might reasonably characterize RMO when overburden migration-velocity errors have only weak or moderate lateral variations, when significant lateral variations occur within the ray bundle of a single subsurface point, RMO can become complex, and the use of a parametric representation will lead to erroneous input data.

Figure 1 shows a single low-velocity feature (of velocity 1800 m/s) embedded inside a constant background velocity (2000 m/s). PreSDM gathers (Figure 2a) are generated using the background velocity with the perturbation removed. Because of this localized migration-velocity error, a single reflector might be imaged correctly only at near offsets, only at intermediate and far offsets, only at near and far offsets, or at other combinations of offset ranges. The resulting RMO shows extremely discordant undulations among offsets. If parametric scanning is used to pick these complex shapes, it will feed spurious RMO data into tomography.

Figure 1c shows the tomographic result from parametric picks using a second-order formulation. The inversion using the parametric picking fails to recover the true location and velocity value of the perturbation. It should be noted that this inaccurate inversion result is likely to remain the same no matter how densely sampled an inversion grid is used and will persist even if the sampling in space and offset is also dense.

To identify small-scale velocity anomalies that are beyond the capability of parametric-based workflows, input RMO data must retain key information on migration-velocity error that is local to each individual offset. This demands that for an accurate representation of RMO, nonparametric shapes must be picked and used as tomographic inputs.

In general, reliable nonparametric picking is a tough problem because of the infinitely many shapes of curvature that are possible. Past efforts have indicated that a fair amount of
manual effort was often needed to guide the picking process to obtain precise nonparametric picks (Brittan and Yuan, 2005).

Figure 1. Constant-velocity model with an embedded low-velocity perturbation: (a) true model; (b) model inverted from nonparametric picks; (c) model inverted from single-parametric picks. Note that the result from tomography using nonparametric picks is considerably superior to that from parametric picks.

Woodward et al. (2008) describe an automated method that applies trace-by-trace cross-correlation to parametric picks to boost the accuracy of nonparametric picks.

It is possible that in the case of very complex move-out, this technique might suffer from unavailability of the high-quality pilot traces that are required for its effective operation. In this article, we present a different methodology for nonparametric picking and show the resultant impact on tomographic velocity updates, with a focus on the resolution of localized velocity heterogeneities.

METHOD

To maximize the amount of data information that can be used to drive a tomographic velocity update, the new nonparametric picking method has been designed to maintain a capability for the automatic dense and volumetric picking of CIP gathers, a key advantage offered by the parametric methodology.

Figure 2. (a) PreSDM gathers show complex residual move-out because of the presence of a low-velocity perturbation that is not accounted for in the velocity model used for migration. In each gather, near offset is to the left and far offset to the right. The offset range is 100 to 8000 m in increments of 100 m. (b) The same gathers are overlaid with general move-out picks.

In contrast, however, the nonparametric method also is designed to track the actual shape of a reflection event without any a priori knowledge of its true move-out profile. With this method, a reflection event is defined as an ensemble of offset trace samples that corresponds to the seismic reflection from a single subsurface point. A sophisticated wavelet-tracking technique is used to calculate the depths of a reflection event of interest, working progressively from near to far offsets. Several constraints are introduced to enforce the searching process to follow the same reflection event (i.e., to prevent cycle skipping) and to prevent any remnant coherent noise (such as multiple energy) from being picked.

To ensure the quality of the picks, a metric of semblance also is introduced and computed along the tentative event trajectory as a basis for pick filtering. However, it should be noted that a picking algorithm using this methodology requires reflection events on migrated gathers to be cleaner and more continuous than methods using parametric-based algorithms. Data preconditioning thus is often needed to enhance the continuity of reflection events, and post-picking smoothing is also helpful for further enhancing the quality of the picks.

This technique requires no horizon or other a priori structural information and is fully automated in a top-down manner. In addition, it is efficient enough to allow large 3D or wide-azimuth data to be processed within a similar time frame to that normally needed for parametric picking. Picked nonparametric data, along with relevant semblance volume, are then supplied to the tomographic inversion, with the aim of deriving highly resolved velocity updates.

In addition to the use of nonparametric picks, geologic compliance of the resulting seismic-velocity model can be increased by the use of a priori constraints during the inversion itself. In particular, we use a regularization operator such that the model itself will vary as little as possible along predefined geologic dips.
EXAMPLES

Our first synthetic example of nonparametric tomography is the single perturbation model introduced earlier in this article. RMO picks made using the new method are shown in Figure 2b. It is clear that localized non-hyperbolic move-outs are picked precisely along the offset axis, and thus, offset-dependent velocity information will be retained within those picks. In fact, tomographic inversion of the picks produces a much improved velocity model in comparison with that of conventional parametric tomography (Figure 1b versus Figure 1c, respectively). The recovered perturbation is close (in magnitude, location, and shape) to that of the true model, proving the effectiveness of the technique in resolving highly localized velocity heterogeneities.

Secondly, nonparametric tomography is applied to a real 3D marine data set. This data set is interesting because the water bottom in the area is characterized by strong topological variations that might serve as local velocity heterogeneities. Initial preSDM gathers, produced using a smooth layer-like starting model, display fairly large non-hyperbolic move-out stemming from the rugose water-bottom surface and other small-scale velocity anomalies. It is difficult to characterize move-out undulations using parametric picking, and this poses a challenging model-building task for parametric-based workflow.

CONCLUSIONS

We address the necessity of having accurate residual-move-out picks as input data for high-resolution reflection tomography. A new methodology is presented that allows reliable and efficient picking of complex residual move-outs in a fully automated manner. A test on a synthetic data set demonstrates the method’s superior capability of recovering small-scale velocity anomalies compared with conventional parametric tomography. Applying this new method to a 3D marine data set shows that accurately characterizing RMO curvature helps to produce flatter reflectors in preSDM gathers.
ACKNOWLEDGMENTS

We thank ION for permission to present this work and an anonymous oil and gas company for permission to show the field data set. Thanks are also given to our ION GXT colleagues for their discussion and help.

REFERENCES


