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INTRODUCTION 
  

The Northern Carnarvon Basin is Australia’s principle 

hydrocarbon producing basin (Barber, 2013), with the majority 

of current production from conventional oil and gas plays 

(Barber, 2013). Modern recovery methods can often be heavily 

reliant on secondary structural permeabilities provided by 

natural and enhanced fracture sets. In this study, we use 

resistivity based wellbore image logs from the Formation 

Micro-Imager (FMI) tool in order to identify detailed, high 

resolution, structural information on natural fractures present 

within 10 petroleum wells situated on the Rankin Platform at the 

margin of the Dampier Sub-Basin. 

 

The Northern Carnarvon Basin’s Dampier Sub-basin is one of 

a series of large en echelon rift depocentres containing a 

sedimentary succession dominated by Triassic, Jurassic, and 

Lower Cretaceous sediments (Tindale et al., 1998). It has a 

dominant north-northeast to northeast striking fault trend 

formed through oblique extension (Romine et al., 1997). Major 

extensional fault systems separate the Dampier Sub-basin from 

nearby structural highs such as the Rankin Platform (Stagg and 

Colwell, 1994), with broad marginal terraces such as the 

Enderby Terrace having formed over down-faulted and rotated 

blocks along the fault margins, including between the Rankin 

Platform and the Dampier Sub-basin (Kopsen and McGann, 

1985). While the Carnarvon Basin hosts large inversion 

structures, these are primarily limited to the Exmouth Sub-

basin, Exmouth Plateau, and Barrow Sub-Basin (Hocking 

1990), with expression in the Dampier Sub-basin limited to 

transpressional reactivation of rift-related structures (Longley et 

al, 2002; Cathro and Karner, 2006). Present day, the Northern 

Carnarvon Basin has been demonstrated to likely host a strike-

slip faulting stress regime (Neubauer et al, 2007) though there is 

neotectonic evidence for a reverse faulting regime (Hillis et al, 

2008; Revets et al, 2009). 

 

IN-SITU STRESSES FROM GEOPHYSICAL 

DATA 

 
Data collected during petroleum exploration has proven 

valuable in constraining crustal stress orientations in continental 

regions (e.g. Bell, 1990). In-situ maximum horizontal stress 

(σH) orientations are derived from stress indicators such as 

borehole breakouts (BOs) and drilling induced tensile fractures 

(DITFs) in petroleum wells (Bell, 1996). Both BOs and DITFs 

form as a response to stress perturbations that exist around 

open wellbores (Kirsch 1898). Borehole breakouts are 

elongations of the borehole in the compressive regions of the 

borehole walls, and DITFs are vertical fractures formed in the 

tensile regions of the borehole wall (e.g. Brudy & Zoback 

1999) (FIGURE 1). A total of 38 BOs and 5 DITFs were 

identified in the 10 image logs interpreted in this study, resulting 

in a regional mean σH orientation of 116°N for the study area.  

 

In addition to the 10 wells featuring image logs, another four 

wells were used to help constrain stress magnitudes. Vertical 

stress magnitude (σV) is defined as the stress applied by the 

mass of overburden above a specific depth, and is calculated 

through an integration of rock densities to the depth of interest 

(Bell, 1996a). The calculated σV gradient in the study area 

varies from 20.4 MPa km-1 (bsb) to 22.7 MPa km-1 (bsb) in 

the Carnarvon Basin (TABLE 1) a variation of 2.3 MPa km-1.  

 

Minimum horizontal stress magnitude (σh) can be deduced 

from fracture closure pressures and leak-off pressures obtained 

through hydraulic fracturing experiments, such as leak-off tests 

(LOT) (Bell, 1996). These involve sealing a section of wellbore 

during drilling and increasing hydraulic pressure until a fracture 

is formed (Bell, 1996). In this study, nine LOTs were used to 

constrain the magnitude of σh. Values of σh range from 12.66 

MPa at 0.8 km to 50.3 MPa at 2.6 km (TABLE 1).  

 

The magnitude of σH is estimated from relationships with σh 

(Bell, 1996). Rock strength can be assumed to be zero where 

tensile failure has occurred (Brudy & Zoback, 1999). Wells 

featuring DITFs and LOTs can therefore be used to estimate 

σH (Hubbert & Willis, 1957). Nine LOTs were used to estimate 
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σH magnitude, resulting in values that range from 16.6 MPa at 

0.8 km to 71.0 MPa at 2.6 km (TABLE 1). 

 

 
FIGURE 1: Sections of FMI image showing (A) borehole 

breakouts (BO) from Dixon-2 and (B) drilling-induced 

tensile fractures (DITFs); (C) azimuth of BO and DITFs 

with respect to the circumferential stress around the 

wellbore (Hillis & Reynolds, 2000). 

   

NATURAL FRACTURES IN IMAGE LOGS 
 

Natural fractures are common natural features that occur in the 

brittle crust, and which are often considered to be scale 

invariant (Walsh and Watterson, 1993; Nicol et al, 1995). As 

well as being present on all scales, natural fractures have been 

experimentally shown to enhance permeability within geologic 

media by up to several orders of magnitude (Brace, 1980). 

Significant permeability improvements are seen within rocks 

that feature low primary permeabilities and porosities, however, 

the effect is far more modest within permeable rocks (Nelson, 

1977; Swolfs et al, 1981). Electrical resistivity image logs allow 

for simple identification of natural fractures, as they provide a 

high resolution pseudo-image of the borehole wall (FIGURE 

2). Fractures appear on this image as sinusoids where the crest 

represents the up-dip part of the fracture and the trough 

represents the down-dip part of the fracture. The  

 
FIGURE 2: A section of FMI image showing electrically 

resistive (grey) and electrically conductive fractures 

(black). Examples of bedding are marked in blue and an 

erosional surface is marked in green, illustrating the 

similarity in appearance between syn-tectonic and non-

tectonic features (Bailey et al., 2014). 

amount of dip controls the amplitude of the sinusoid, with  high 

amplitudes equal to steeply dipping fractures and low-

amplitudes are equal to shallowly dipping fractures (FIGURE 

2). Syn-tectonic features such as fractures can have very 

similar characteristics to non-tectonic features such as bedding 

and other sedimentary structures, and so it is important to 

distinguish between these (FIGURE 2). As all the wells utilised 

in this study are petroleum wells, they exhibit a clear sampling 

bias towards the Late Jurassic to Late Cretaceous sediments 

which contain proven reservoirs of natural gas. 

 

A total of 500 fractures are identified in the 10 interpreted FMI 

logs (FIGURE 3), consisting of 177 electrically conductive and 

323 electrically resistive fractures (FIGURE 3). It can be seen 

that there are no well-defined mean strike orientations, with 

fractures occurring at all orientations (FIGURE 3). A generally 

northeast-southwest trend is evident in the resistive fractures, 

accompanied by a northwest-southeast fracture trend and a 

general spread of fractures at all strikes (FIGURE 3). 

 
FIGURE 3: Rose diagrams showing strike orientation of 

fractures identified in image logs for (A) all fractures; (B) 

conductive fractures; (C) resistive fractures.  
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DISCUSSION AND CONCLUSIONS 

 

The study area can be seen to host an array of fracture 

orientations which appear to occur without a systematic 

orientation, and which are seemingly unrelated to the dominant 

structural trends or in-situ stress. However, when this regional 

presentation of data is decomposed into the component wells 

and compared to the local structure (10 kms), it is observed 

that fracture orientations reflect the structures adjacent to the 

wells (FIGURE 4). Additionally, there is likely to be a 

secondary control on fracture orientation for these wells, as in-

situ stress magnitudes along the western margin of the Dampier 

Sub-Basin and through the Rankin Platform are thought to be 

close to isotropic; with σH and σV approximately equal and 

possibly interchangeable, and σh close in magnitude to σH and 

σV (TABLE 1). This is compared the rest of the Carnarvon 

Basin where distinctly anisotropic stress magnitudes are 

calculated (Neubauer et al., 2007). As a result, where there is 

no structure dictating fracture orientations, there is no 

overriding stress orientation controlling fracture propagation 

orientation. Fractures may therefore form as the stress field 

fluctuates into anisotropy due to local perturbations (e.g. fluid 

pressure), which under the regime could result in any of the 

principle stresses becoming the maximum, and, therefore, 

fractures forming at any orientation (Tewksbury et al., 2014). 

Hence, the scattering in fracture observations observed as a 

secondary trend within the Dampier Sub-Basin wells. The 

possibility of there being lithological or rock property controls 

over fracture formation in this region was also discounted, with 

an analysis of fracture occurrence compared to calculated and 

measured rock properties including lithological logs, 

unconfined compressive strength, Poisson’s Ratio, and 

Young’s Modulus, so a structural and stress based cause is the 

most likely and is supported by our data. 
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Figure 4: Map of locations of wells featuring interpreted FMI logs, and the proximity of those wells to local structural 

features. Rose diagrams are for fracture orientations from each well, compared to the strike (red line) of the fault adjacent 

to that well. Well Brulimar-1 lacks a line due to the low number of identified fractures. 

 
Well FMI Interval (m) LOT Depth (m) σh (MPa) σV (Mpa/km) σH (MPa) 

Brulimar-1 3023 - 3271 1338.6 22.8 - - 

Dixon-2 - 1849.9 30.15 - - 

Eris-1 2149 - 3258 - - - - 

Lady Nora-1 - 1940.07 33.04 - 44.28 

Pluto-1 2141 - 3275 - - 20.4 - 

Pluto-3 2215 - 3528 - - 21.4 - 

Pluto-4 - 1259 20.4 - 26.7 

Pluto-5 2738 - 3165 1085.16 22.07 21.1 - 

Pluto-6 2345 - 3285 - - 21 - 

Wheatstone-2 - 774.8 12.66 - 16.6 

Wheatstone-2 - 2639.8 50.34 - 71 

Xena-1 - 2116 36.6 21.5 - 

Xena-2 2235 - 3568 - - 22.4 - 

Xena-3 2315 - 3517 2094.8 35.4 22.7 - 

Xeres-1 2291 - 3217 - - 21.8 - 

Table 1: Depths (m) of image log intervals, leak-off tests (LOTs) and estimated values for the three principle stresses for 

the wells used in this study.  


