
 
 

Applicability of standard Euler deconvolution, modeling and 
amplitude magnetic data inversion in Greenfield programs: The 
Leite target case study - Carajás Mineral Province – Brazil  
 
João Paulo Souza*    Marcelo H. L. dos Santos  Cantidiano O. Freitas  
Instituto de Geociências - UnB   Instituto de Geologia - UFG  VALE S.A - DIPM 
Brasilia, DF, Brazil    Aparecida de Goiania, GO, Brazil Belo Horizonte, MG, Brazil 
joao.paulo.souza@gsmgeophysics.com  marcelo.leao.santos@gmail.com cantidiano.freitas@vale.com 
 
*presenting author asterisked 
 

SUMMARY 
 
The Leite target is located in Carajás Mineral Province and has a magnetic anomaly with 140 nT of amplitude, elongated in the 
northwest–southeast direction. Four exploratory drillholes were performed to test the magnetic anomaly. The test showed that the 
source of the anomaly is a narrow magnetite hydrothermal alteration zone bearing copper mineralization up to 2%. In addition, 
geologic and geochemical data, magnetic susceptibility (MS) measurements were collected to identify the lithotypes with 
ferromagnetic minerals. We use three different techniques to estimate the depth and geometry of the magnetic source: standard Euler 
deconvolution, total field magnetic anomaly modeling, and magnetic amplitude inversion. When visualized in 3D, the depth of 
solutions from Euler deconvolution crossed the real magnetic layer with less inclination. The modeling, using the solutions from 
Euler deconvolution, was performed, and the magnetic anomaly produced by the body modelled achieved a low misfit. The body 
used in the forward modeling is geometrically similar to the geologic magnetic layer. The magnetic amplitude inversion successfully 
recovered the MS distribution. Finally, we carried out a borehole magnetic survey in two drillholes to validate the obtained models 
and investigate the magnetic source. This survey confirmed that the models were intercepted and the magnetic anomaly was 
associated, a hydrothermal alteration zone, with magnetite intercepted by drillholes. In this study, we demonstrated that the use of 
those techniques was effective in Greenfield exploration programs 
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INTRODUCTION 
The target Leite is a magnetic anomaly located in Carajás Mineral Province (CMP) established due to an aeromagnetic survey over 
Águas Claras Formation sedimentary sequence in the Carajás basin. Due to the proximity and geologic similarity with the Alemão 
deposit, the Leite target has become an important area to host copper mineralization associated with magnetite breccias. For the first 
magnetic anomaly investigation, four drillholes were drilled along two norths–south sections. These boreholes intercepted a narrow 
hydrothermal alteration zone with chalcopyrite and magnetite breccias, with almost 10m of apparent thickness and copper 
mineralization up to 2%.  

Magnetic susceptibility (MS) measurements on drillhole cores were performed for quantitative analysis of the lithotypes intercepted 
by drillholes and to check if the magnetic source was reached. The MS measurements show that the magnetic source, a hydrothermal 
alteration zone, with magnetite has an average susceptibility of 0.5 SI.  

Usually, the mineralization at Carajás Province has a sigmoidal shape, creating narrow structures above or below the large 
hydrothermal zone (such as fingers in a hand). This situation could be occurring presently in the Leite target, and we decided to use 
the magnetic data set to estimate the geometry and depth of the anomaly source. 

Standard Euler deconvolution (SED) (Nabighian et al., 2001) was the first method used to determine the geometry. Besides the 
location of the source (coordinates x, y, and z), extended Euler deconvolution can estimate the dip and susceptibility of magnetic 
sources (Mushayandebvu et al., 2004). Guillen et al. (2004) use these solutions to obtain a 3D geologic map. Euler solutions were 
used to make an initial model to geophysical modeling. Despite the facts mentioned before, the values of susceptibility in the forward 
modeling were given by the core of drillholes 

At Carajás Province, magnetite-rich copper mineralization is associated with magnetic remanence, and in this case, we use the 
direction of magnetization obtained based on Dannemiller and Li (2006). The method used searches for the maximum 
crosscorrelation between the magnetic total gradient and vertical derivative over a range of field inclinations and declinations. The 
major difficulty is that the method requires the gradients to be calculated on a reduced-to-pole (RTP) image. This transformation is 
almost impossible to do accurately at this latitude (low inclination and high declination). A modified procedure using a more stable 
RTP transformation was used (Li, 2008). 

For geomagnetic surveys near the equator, the RTP value tends to become numerically unstable particularly in the presence of noise. 
The problem usually presents as declination parallel striping in the transformed image. This instability can be partially compensated 
by using a pseudo field inclination, i.e., when computing the amplitude component of the RTP transform while still preserving the 
phase.  
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As a last phase of interpretation, we performed a 3D magnetic amplitude inversion using the AMP3D algorithm (Shearer, 2005). The 
amplitude transformation is based on RTP and is instable in low magnetic latitudes (Shearer, 2005). Leão Santos et al. (2015) 
demonstrate that the amplitude transformation can reach acceptable results even when started from an unconstrained model. In this 
area, we started the inversion constrained from the distribution of MS obtained from the forward modeling. We compared the final 
results with the forward modeling, and the susceptibility values were compared with the data measured in the drillholes cores.  

To confirm the inversion and forward modeling results, a borehole magnetic (BHMAG) survey was performed in two different 
drillholes.  

The present survey confirmed the obtained model, the possible source geometry, and planned future works. In this paper, we use the 
airborne magnetic data acquired using a sensor installed on a helicopter. The survey was carried out in 2012, and the area was 
covered by 25 flight lines with direction N25°E, with 200 m of spacing and one measurement approximately every 3 m. The survey 
has a total of 67 km of magnetic profiles. 

QUALITATIVE INTERPRETATION AND GEOLOGICAL SETTINS 
As said before, the Leite target was established due to a total field anomaly from an airborne survey with 140 nT of amplitude, 
elongated in the northwest–southeast direction The shape of the total field anomaly, total gradient (analytic signal), and the results of 
the drillholes suggest that the source of the anomaly is dipping to the northeast with a high angle (>60°). The target is composed by a 
blue low magnetic area and a red high magnetic area in the south part (Figure 1). In the image of the vertical derivative, it is clear that 
the two magnetic features form the target (Figure 1b). 

(a) (b) 
Figure 1: Total magnetic intensity (1a) and the first vertical derivative (1b) to Leite target. The white dots are representing 
the drillholes executed, the mineralised body is the red polygon and the black rectangle in the figure is the area with 
geological mapping.  

In CMP magnetic latitude, we expect that the induced magnetic anomaly shows a low magnetic response. The presence of remanence 
in the Leite target is expected because almost all of the big copper deposits at CMP have strong magnetic anomaly with remanence. 
A copper mineralization event with magnetite, dated in 2.5 Ga (Moreto et al., 2015), is associated with magnetic remanence in the 
deposits. Another mineralization event occurred in 1.8 Ga (Moreto et al.,2015), without magnetite.  

The drillhole data indicated sub-vertical layers dipping 75° to the north–northeast. This main fault zone is coincident with the 
magnetic anomaly and with the mineralization intercepted by the drillholes. Thus, we can interpret that this geologic fault served as 
conduit for percolation of the hydrothermal fluids responsible by the Cu/Au mineralization. 

Geologic mapping at the target defined five different lithotypes (Figure 2): sandstones, pelites, basic volcanic rocks, and 
gabbros/diabase. 

The mineralization of Leite target is composed by two tabulates and parallel bodies with a northwest direction (Figure 2). The south 
body has 940 m of extension, whereas the north body has 230 m of extension.  

The geologic data show that the orebody is dipping 70° to north–northeast, open in depth and along the strike. The style of 
mineralization with a paragenesis of copper-gold associated with iron oxide indicates the iron-oxide-copper-gold (IOCG) deposit 
model. The good correlation of the anomaly with mineralization corroborates this type of model.  

The litothype hosting the copper sulphide (mainly chalcopyrite) mineralization was defined as a hydrothermal alteration zone with 
massive magnetite. Due to the high hydrothermal alteration (high fluid/rock ratio), it is impossible to identify the original rock. The 
other lithotypes intercepted by the drillholes show hydrothermal alteration, however, without magnetite and copper sulphides. Due to 
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the geologic characteristics of the Leite target, we can generate prospective targets to Proterozoic IOCG deposits at region from 
magnetic data sets; i.e., we can find the copper mineralization indirectly by mapping and drilling of magnetic anomalies. 

 
Figure 2: The geological map of the Leite target. The letters indicate the drills executed. 

METHODS 
After the acquisition, we process the magnetic data to obtain the total field magnetic anomaly (Figure 1a) and the vertical derivative 
(Figure 1b). To obtain the amplitude of magnetic anomaly (Figure 3), we applied the algorithm developed by Shearer (2005). In most 
of the cases, this transformation is unstable on low magnetic latitudes due to the RTP transformation. However, Leão Santos et al. 
(2015) show a successful case of application of the same algorithm in CMP. We understand that applicability of this technique is 
restricted in this scenario and should be evaluated. We perform a qualitative analysis with the comparison between the total magnetic 
gradient and the amplitude of magnetic field 

These two transformations should be similar in a qualitative analysis. Besides, we do not show any stripping in the declination 
direction. When these two requirements are not achieved, the use of amplitude is refused. 

To determine the geometry and the depth of magnetic source, we perform SED (using Oasis Montaj® software) in the total field 
magnetic anomaly (Thompson, 1982).  

From the data obtained in the drillholes, we can assume that the magnetic layer has dips with a high angle (>70°) to north/northeast. 
The layer has 10 m of thickness and at least 900 m of extension in the east– west direction. Due to these geologic characteristic, the 
source can be assumed as a dike, and for the Euler deconvolution, we use structural index 1.  

From the Euler solutions, we constructed an initial body with constant value of susceptibility. This value is the same found in the 
core analysis 0.5 SI. Although we have the susceptibility values on drillhole cores, we did not carry out the remanence 
measurements. Instead, we estimated the remanence from the total magnetic field using the methodology applied for Dannemiller 
and Li (2006). This methodology is based on crosscorrelation between the vertical gradient of the magnetic anomaly RTP and the 
total gradient of the same field.  

As we know, RTP is unstable at low magnetic latitudes because of this reason, we decided to use RTP to low latitudes (RTP-L) (Li, 
2008). The RTP-L is affected by remanence magnetism and could not work properly. As occurred with amplitude after the 
application of the filter, we compared the transformation with the analytic signal (total gradient) and the analytic signal of vertical 
integration (Paine et al., 2001). The anomalies of these transformations must be similar, if not, we rejected the RTP-L transformation. 
Table2 shows the values of remanent and total magnetization estimated for the Leite target; these values were used in the geophysical 
modeling. The direction of magnetization is similar to IOCG copper deposits such as the Alemão and Sequeirinho IOCG deposits.  

For the modeling, we constrained fixed values of susceptibility, vertical extension, dip, and the value of direction of magnetization. 
We tried to fit the model to the observed data changing only the shape of the body until it reached an acceptable residual. The final 
result is a rigid body with homogeneous values of susceptibility. Because the model has a high susceptibility, the self-
demagnetization was computed during the modeling.  

This model was used as an initial model for the amplitude inversion. For the magnetic amplitude inversion, we used the algorithm 
presented by Shearer (2005) and Li et al. (2010).  
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We used the amplitude instead of the total magnetic field due to the problem of remanence. The amplitude has weak dependence on 
the direction of the total magnetization direction (Shearer, 2005) 

We perform 13 inversions with different values of regularization parameters, from 106 to 10-6 with 101 steps. The selected model 
was the inversion that matched the optimum regularization parameter (inflexion point) in the L-curve (Oldenburg and Li, 2007; 
Oldenburg and Pratt, 2007) and the biggest curvature.  

The final result is a smooth distribution of the recovered susceptibility, which was compared with the geologic data and drillholes 
results.  

The last step was trying to identify any magnetic source that was not intercepted by drillholes or narrow bodies with no response in 
the magnetic survey, in this step, we performed a BHMAG survey in drillholes A and B. We used a reflex probe, which was designed 
to measure the drill hole deviation based on magnetic and gravimetric measurements. In our case, we were not interested in the dip or 
azimuth values of drillhole, but in the values of magnetic measurements done by the probe. The borehole survey profiles of the holes 
were used to identify any new susceptibility distribution and to validate the result of the inversion. 

RESULTS 
The magnetic anomaly has 70 nT of amplitude, and the direction of inducing magnetic field in the region was I = −5.6° and D = 
−18.5°. The anomaly shape in the target is not usual for this magnetic latitude; however, applying the methodology listed before, we 
found the value of 39º for the inclinations and 339º to declination. 

 In the first step used to determine the geometry and depth of the magnetic source (the magnetite hydrothermal alteration zone), we 
performed SED. The SED found 545 solutions with a depth average of 258 m. The SED 3D result over the magnetic amplitude 
image is shown in figure 3.  

(a) 

 

 
(b) 

Figure 3: Amplitude field transformation (3a) to Leite targe. The colours dots are the result of Euler deconvolution. In 3b 
figure are the Euler solutions in 3D with the drills executed. 

When plotted in 3D, we can observe that the surface formed by Euler solutions (Figure 3) has a dip less than the real layer. In the 
southern drillholes (C and D), the Euler surface intercepts the drillholes 75 m below the magnetic layer. In the northern drillholes (A 
and B), the Euler surface intercepts the drillholes 10 m above the massive magnetite. The Euler surface has 50° of dip to north–
northeast; this value is 20° less than the real layer. Due to this reason, there is a dislocation to the north between the real body and the 
Euler solutions when we project them in the surface.  

The SED solutions cannot estimate with precision the depth and the dip of the magnetic layer; however, the dip direction and the 
strike of the body were estimated correctly. The Euler surface was used as an initial model in geophysical modeling.  

In the modeling, we assume that the total field magnetic anomaly had remanent magnetization and we restricted the vertical 
extension in 500 m. 

For the forward modeling, we manually change the shape of the body and the value of susceptibility until it reaches a good fit. As a 
result of the geophysical modeling, a narrow dike body was obtained dipping 65° to N27°E. The body obtained by the modeling has 
0.5 SI of MS, which is the same as the MS measurements on the drill cores. The effect of self-demagnetization was computed 
automatically by the modeling algorithm. 

The modelled data have a good fit with the measured data (Figure 4). The modelled body has a dip greater than the Euler solutions; 
however, this does not intercept the drillhole in the same place of the real magnetic layer. In the southern drillholes, the modelled 

Applicability of Standard Euler Deconvolution, Modeling and Amplitude Magnetic … Souza & dos Santos et al.

ASEG-PESA-AIG 2016 August 21–24, 2016, Adelaide, Australia4



 

 

 

body intercepts the drillhole in the same point of the Euler solutions; however, in the northern drillholes, the model is almost 50 m 
below the real layer (Figure 5a).  

 

Figure 4: Modeling profiles of Leite target.  We can observe a good fit between the aeromagnetic anomaly observed and the 
forward modeling of the blue body. 

As we expected, the Euler surface crossed the modelled body due to the different dip. We interpret that the difference between the 
real layer and the modelled body is due to the remanent magnetization. Although we calculate the direction of magnetization, we 
understand that in this latitude, the RPL-L is not reliable; the real direction of magnetization could be different from that we 
calculated. Probably, the remanence affects the dip and the vertical extension. One way to reach the true direction is by constraining 
the geologic layer and trying to perform a forward modeling adding a range of magnetic remanent inclination and declination. 
Another question is the value of MS. We used the value found with a susceptibility meter during the susceptibility log. However, it is 
necessarily a reliable remanence measurement in a paleomagnetic laboratory.  

The last method to determine the geometry of Leite target was the amplitude of the anomalous magnetic field inversion in 3D. The L-
curve has an inflexion point in the regularization parameter value of 0.1; the inversion using this value was chosen as the final model. 

In contrast to the first two techniques, constrained inversion recovered a smooth magnetic source with a wide shape, dipping to the 
northeast and with susceptibility values between 0 and 0.17 SI (Figure 5b). 

(a) 

 
 
 

 
 
 

(b) 

Figure 5: The rigid body recovered by the forward modeling (5a) with the Euler solutions (the coloured dots). The model 
recovered by the amplitude inversion can be seen in the 5b figure. 

To correlate the results of the inversion, we used two geophysical/geologic sections AC and BD (Figure 6). The massive magnetite 
hydrothermal alteration zone is in the central axis of the inversion susceptibility model. However, the recovered values of 
susceptibility contrast are low, approximately 0.1 SI, if compared to the MS measured on drillhole cores. These values could be 
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explained due to the self-demagnetization effect. When the magnetic amplitude inversion is performed in a target with high values of 
susceptibility, we cannot recover the real value of susceptibility (Krahenbuhl and Li, 2007). Krahenbuhl and Li (2007) show that in a 
high-susceptibility environment, the amplitude inversion cannot recover the entire model and the full vertical extension. 

Figure 6: The section AC (6a) with a vertical slice of magnetic susceptibility model obtained by the amplitude inversion. The 
CD section can be seen in the figure 6b. 

In figure 6, it is possible to observe that the dip of the modelled magnetic layer is 62°, different from the real value. Besides, in 
Figure 6b, it is possible to observe that the vertical extension of the source was not recovered in the same points. This situation is 
explained by Krahenbuhl and Li (2007).  

We compared the three depth and dip estimation results (Figure 7), and as we expect, the modelled and inverted bodies are 
coincident, unlike the surface formed by the Euler solutions. This surface is dislocated from the two bodies and is crossing due to the 
lower dip. Finally, after the modeling of the Leite target source, we perform a BHMAG survey in two drillholes to validate the 
models and to investigate if any source remained without being intercepted by drillholes. The results of this survey show the strong 
magnetic response of the mineralization; in some points, the massive magnetite zone has almost 25,000 nT of amplitude. 

Figure 7: Comparison between the Euler solutions (dots), the modelled body (blue body) and the amplitude inversion (grey 
body). 

CONCLUSIONS 
The three techniques used in this paper showed limitations to obtain the geometry and depth of the magnetic source. The exact value 
of the dip was a problem in the three techniques applied. The vertical extension was another problem that we could not determine 
with precision.  

However, all the techniques gave correct results in relation to the strike and dip direction. The worst result was by Euler 
deconvolution; the surface formed by the solutions is dipping 50° to the north–northeast, almost25°ofdifference between the real 
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source and the surface. The Leite target layers and structures have a strong dip (>70°). The magnetic modeling showed a dip of 65°, 
5° less than real. This result is more acceptable than the Euler deconvolution result. The amplitude inversion showed three problems: 
dip, vertical extension, and the susceptibility value. The dip recovered by this technique was 62°; in some points, we can observe that 
the source was not totally recovered and the value of the recovered MS is lower that the values found in the core. 

Although the magnetic anomaly of the Leite target is isolated and inside of a nonmagnetic environment, we expect that the results of 
this work have an inaccuracy when compared with the real data. This imprecision observed in the data we assigned to two sources: 
The first one is the high susceptibility. In an environment with high susceptibility, the ability to get the vertical extension could be 
affected. The other factor is the low latitude; in this latitude, it is very hard to get a reliable reduction to the pole. This problem 
directly affected the calculation of the remanence. 

 In this paper, we have demonstrated that these three methods will be useful to give support to a Greenfield drilling exploration 
program. In the Brownfield projects, we think that these techniques will not bring any relevant information. 
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