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SUMMARY 
 
Full tensor gradient (FTG) data is highly useful in hydrocarbon exploration and the detection of some geological targets with small 
size as its higher detailed information abundance and finer resolution. At the same time, there are some high-frequency Gaussian 
white noise mixed in the target signal and which has closer frequency range than the conventional gravity data. Thus, one key step 
before inversion is to remove as much Gaussian white noise as possible and reserve the subtle details. For this pre-processing step, 
several effective methods have been used, including low-pass filters, least square fitting methods based on Laplace equation and 
wavelet filtering methods. In this paper, we would utilize the translation invariant wavelet for the reason that it can suppress Gaussian 
white noise through multi-resolution analysis and at the same time can avoid pseudo-Gibbs phenomenon. The other point different 
from wavelet method used before is that we applied a mixed threshold constructed according to the curve of both soft threshold and 
hard threshold. Compared to soft and hard threshold, mixed threshold can keep more details and remove more noise respectively in 
terms of the energy distribution of signal and noise. Then we process wavelet coefficients with mixed threshold and do inverse 
transform to recover the data. The results demonstrate that translation invariant wavelet can not only remove the major part of 
Gaussian white noise, but also reserves high-frequency detailed information of FTG data. Obviously, translation invariant wavelet 
with mixed thresholding has preferable application effect in filtering FTG data. 
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INTRODUCTION 
 
Full tensor gradient (FTG) data is playing a more and more important role in hydrocarbon exploration, under both airborne and 
seaborne conditions. The components of FTG data can be effectively used to geometric inversion and physical properties inversion of 
exploration target. With more localized features, the power spectrum of FTG data is more focused on high-frequency section (Julio et 
al., 2004). In order to extract the detailed signal caused by the target accurately, it is necessary to suppress Gaussian white noise 
which has close frequency range.  
 
Apart from low-pass filtering in Fourier domain, two other methods were utilized to suppress Gaussian white noise while retain 
minor details in the signal, that is, Laplace equation fitting method and wavelet filtering method. The former one can remove the 
parts of signal that are not subject to the mutual relations among the components of FTG data, and which are addressed with Laplace 
equation. That is to say, if a signal in one tensor is not supported in the other tensors, it will be removed from the data. This method 
combines independently measured gradient components to reduce noise and it requires a method of calculating one gradient 
component from measurements of a different gradient component. Fourier method, equivalent source method, direct fitting of 
harmonic functions and space-domain integrals have been used to do the calculation (Nabighian and Misac, 1984; Sanchez et al., 
2005; Barnes and John, 2011; Yuan et al., 2013). The latter one removes noise through vanishing or diminishing the wavelet 
coefficients which are regarded to be ascribed to noise, and threshold is used in this procedure. After that, the remaining wavelet 
coefficients are used to recover the target signal.  
 
Translation invariant wavelet transform got prevailing since the application of Coifman and Donoho (1995). It is based on a cycle-
spinning algorithm which consists of a collection of signal shift, filtering each shifted signal and align-average the estimates. With 
the utility of translation invariant wavelet transform, the pseudo-Gibbs effects, which are commonly caused by singularities or 
discontinuities in the signal, will counteract each other and the final results will show less aliasing. Besides, for the pursuit of 
recovering the majority part of the target signal, we created a mixed thresholding method instead of using the conventional soft 
threshold or hard threshold. Three steps exist in the conduction of this method: transforming the FTG data into wavelet coefficients 
with translation invariant wavelet, thresholding the coefficients with mixed threshold and doing inverse transform of the thresholded 
coefficients. We can obtain better results with better recovery accuracy, not only on removing high-frequency noise, but also on 
reserving subtle response of the exploration target.  
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METHOD AND RESULTS 
 
Translation invariant wavelet 
 
Wavelet transform is a kind of time-frequency transform and on its basis, one function can be decomposed into a weighted sum of 
wavelets obtained from dyadic translation and dilation of a specified mother wavelet. For discrete wavelet transform (DWT) utilized 
in this paper, the parameters are discretised and we obtain the family wavelets of a mother wavelet function ( )tψ : 
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wherem is the scale parameter (wavelet decomposition level) and k is the shift parameter. The wavelet coefficientsW% of a one 
dimensional signal ( )f t is the projection of ( )f t onto a wavelet, and let ( )f t be a signal of length 2N . The coefficients of ( )f t are as 
follows: 
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Based on equation (2) and the representation of a one-dimensional signal with wavelet transform, we can get the 
discrete wavelet transforming expression of a two-dimensional matrix ( , )M x y : 
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where ( )tφ denotes scaling function, 0,0c is scaling coefficient and ,j kd are corresponding wavelet coefficients, ,  k l are translations in 
X and Y directions, ,  , i h v d= are sub-band wavelet coefficients in horizontal, vertical and diagonal direction, respectively. In 
practice, we use 2D-DWT to process FTG data, which is based on the algorithm of Mallat with complexity of ( )O n rather than the 
slow 3( )O n matrix multiplication. Then we can obtain the matrix contains approximation coefficients and detail coefficients by 
decomposition of several levels. We created a diagram to demonstrate the procedure on level 1j + , as shown in Figure 1. 
 
Before the decomposition, we proposed the translation invariant wavelet with circular shifts to remove the undesirable artefacts 
caused by misalignments between features in the signal and those in the wavelet basis. This would help to supress pseudo-Gibbs 
effects by averaging the signals of all circular shifts. The main operation is to alter the sequence positions of singularities so that the 
features of the signal could have a better alignment with the basis. Actually, a certain phase shift of the signal can exhibit evidently 
less amplitude oscillation compared to the original signal. In this paper, we use h to denote different shifts and H to define the range 
of all shifts. According to simulation test, I chose 13H = to make sure that a satisfied result will be obtained with low computation 
consumption.  
 
We would use two different wavelet families, Daubechies and Symlets to filter the synthetic FTG data. Daubechies wavelets and 
Symlets wavelets have similar properties with orthogonality, compact support and are near symmetric and these properties make the 
wavelets a good way to suppress the noise and keep the original nature of the useful part of data. Let us use N denote the number of 
vanishing moments, then Daubechies wavelets can be expressed as dbN and symN for Symlets wavelets. We will use Daubechies 
and Symlets with different vanishing moments and different decomposition level to filter the data and pick a better result.  
 
Mixed thresholding 
 
According to theories of Donoho and Johnstone (1994) and Donoho (1995), wavelet transform can make signal energy focused on 
large wavelet coefficients and noise energy distributed throughout the entire wavelet domain. Therefore, wavelets coefficients with 
smaller amplitude are likely to be attributed to Gaussian white noise in signal and by setting these coefficients to zero can we obtain 
the filtered signal. The selection of the threshold determines the filtering effect and an appropriate threshold will help to remove 
noisy part of signal and keep the useful part at the same time. Two thresholds are commonly used at the moment, universal threshold 
and adjusting threshold. Universal threshold is calculated on the basis of the integral statistic characteristics of the signal, including 
the size of the data and noise level, which can be estimated with the energy of coefficients of signal and noise, respectively. The 
expression of universal threshold is: 2lnT Nσ= , in which N is the dimension of data and 1( ) / 0.6745MAD wσ = , estimated with 
the median absolute deviation of diagonal details coefficients on scale one 1w , denotes noise level. 
 
With this universal threshold, there are two main thresholding methods: hard thresholding and soft thresholding. Expressions of hard 
thresholding and soft thresholding are as follows:  
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and 
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Hard thresholding might leave out some Gaussian white noise in data as it made no change to larger coefficients, while 
soft thresholding may cause over-smoothing because of its shrinkage to all the coefficients. Based on these two kinds of 
thresholding methods, we created a mixed thresholding which takes the energetic distribution of signal and high-
frequency noise. Mixed thresholding has a minor shrinkage over wavelet coefficients when they are large, and the 
amplitude of this shrinkage increases as coefficients become smaller. It can be expressed as: 
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The curves of the three thresholding methods are shown in Figure 3. In equation(6), Rα ∈ is a shrink factor and can be 
chosen from the range of [2,  5] . In Figure 3, we chose 3α = . With mixed thresholding, we can get a better result which 
contains more useful contents and less high-frequency noise.  
 
FTG filtering 
 
In this section, we built an underground model with two connected prisms and calculated its gravity gradient response. The 
dimension of the first prism is 240 240 300m m m× × and that of the second one is 400 760 100m m m× × , and their relative density 
is 3 30.4 10  kg m−× ⋅ and 3 30.6 10  kg m−× ⋅ , respectively. The depth of the prisms’ top surface is 50m , 250m and the survey altitude 
is100m from the ground. We set the survey grid to 25 25m m× and the length on northern and eastern direction is 2000m . For this 
model, there will be some subtle details which can reflect the relative position and response magnitude of the two prisms. With these 
details, we can demonstrate the filtering effect of the method in this paper. Then we calculated the forward gravity gradient 
components of the model, and the original data is shown in Figure 4. Before adding Gaussian white noise, the power or the variance 
of each component was estimated. In this paper we added the same magnitude of Gaussian white noise as the raw data. Noise level 
(variance) of ,  ,  ,  ,  ,  Txx Txy Txz Tyy Tyz Tzz is 13.6, 4.7, 20, 13.5, 20.5 and 38, respectively.  
 
Wavelet bases we used are db2~db6 and sym4~sym8, the decomposition level is 1~5. Root mean square error (RMS) was utilized to 
demonstrate the filtering effect of each combination and the average value of RMS of each component was calculated. The results are 
shown in Table 1. We can see that the best result among all is achieved with sym4 on level 2. In Figure 4, we show the filtering 
results of the six components with sym4 on level 2. For ,  ,  Txx Txz Tyy , this filtering method keeps most useful information and 
suppresses noise effectively, for ,  Txy Tyz , it recovers the raw data with a few errors and forTzz , it leaves a bit of noise. It is obvious 
that we can obtain satisfied filtering results with translation invariant wavelet. 
 
Figures and Tables  
 
 
 
 
 

 
 
 

 
 
 

Figure 1: Decomposition structure of 2D-DWT 
on level j+1. 

Figure 2: Model with two prisms. 
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Figure 3: Curve of original signal, hard thresholding, soft thresholding and mixed thresholding. 

 

 
Figure 4: Filtering result of the six FTG components. Column one is the raw model data, column two is noisy data and 
column three is the filtered data. The forth column is the power spectrum, red line is noisy data and green line denotes filter 
data. 
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Wavelet basis 
Decomposition level 

1 2 3 4 5 

db2 0.6074 0.5994 0.6064 0.7002 1.2178 

db3 0.6134 0.6068 0.6069 0.6781 1.2369 

db4 0.6359 0.6307 0.6287 0.6767 1.2482 

db5 0.6464 0.6442 0.6256 0.6648 1.2558 

db6 0.6795 0.6772 0.6504 0.6657 1.2645 

sym4 0.5932 0.5849 0.5904 0.6676 1.2260 

sym5 0.6231 0.6178 0.6221 0.6765 1.2464 

sym6 0.6111 0.6029 0.6052 0.6664 1.2285 

sym7 0.6351 0.6305 0.6306 0.6781 1.2424 

sym8 0.6245 0.6187 0.6252 0.6761 1.2508 

 
Table 1: RMS between raw data and filtered data with different wavelet bases and decomposition level. 

 
CONCLUSIONS 

 
Translation invariant wavelet helps to suppress pseudo-Gibbs phenomenon effectively and at the same time, the application of mixed 
threshold makes a preferable separation between raw data and Gaussian white noise. Using translation invariant wavelet combined 
with mixed threshold, we achieve a satisfied filtering result which keeps most subtle details and removes high frequency noise 
effectively. In the model test, we applied Daubechies and Symlets wavelets and chose sym4 as the wavelet basis used in filtering. 
Symlets wavelets with vanishing moments smaller than 4 are not appropriate and the best combination of different vanishing 
moments and decomposition level can be achieved only by trial-and-error. In this paper, we used the universal threshold which was 
determined with the general statistical information of the noisy data and this is a point that can be promoted in the future work. An 
auto-adjusting threshold on different decomposition level might get a better result on the filtering of FTG data.  
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