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SUMMARY 
 

We use resistor network models to explore the relationship between electrical resistivity and permeability in fractures filled with an 

electrically conductive fluid. The fracture aperture distribution is determined by generating fracture surface pairs that are constructed 

based on characteristics measured on rock samples. We use these to generate and solve resistor networks with variable hydraulic and 

electrical resistance. The aperture is incrementally increased, to analyse the changes in both properties as a fault is opened. At small 

apertures, electrical conductivity and permeability increase moderately with aperture until the fault reaches its percolation threshold. 

Above this point, the permeability increases by four orders of magnitude over a change in mean aperture of less than 0.1 mm, while 

the resistivity decreases by up to a factor of 10. The permeability increases at a greater rate than the conductivity, and therefore the 

percolation threshold can be defined in terms of the matrix to fracture resistivity ratio, M. The value of M at the percolation threshold, 

MPT, varies with the ratio of rock to fluid resistivity, the fault spacing, and the fault offset but is always less than 10. Greater M values 

are associated with fractures above their percolation threshold and therefore open for fluid flow. 
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INTRODUCTION 
 

Permeability in the crust comprises both primary permeability, from interconnected pore space present at the time of deposition of 

sedimentary rocks, and secondary permeability, which can result from fractures and faults. Resource industries such as geothermal 

and oil and gas rely on fracture permeability for reservoir performance, however characterizing the fracture permeability distribution 

from the surface can be a challenge. 

 

The introduction of an electrically conductive fluid into a fault network has been shown to produce changes in the bulk electrical 

conductivity that are measurable from the surface using the magnetotelluric (MT) method (Peacock et al. 2012, Peacock et al. 2013, 

Macfarlane et al. 2014). Magnetotelluric data have also been used to qualitatively infer the permeability of natural fractures (e.g., 

Kirkby et al. 2015). In these examples, the electrical resistivity was interpreted to vary with orientation, with anisotropy ratios of up 

to 200 determined from modelling. Characterising the resistivity anisotropy of faults and fractures helps determine the amount by 

which the faults enhance the conductivity. When the conductivity enhancement can be attributed to fluids contained in the fractures it 

may be possible to use the resistivity to infer their permeability. This is done in porous rocks by first inferring porosity through 

models such as Archie’s Law (Archie, 1942). However, the amount and distribution of pore space in fractured, low porosity rocks is 

likely to be different to that in porous rocks, and both fluid flow and electrical conduction rely on the distribution of pore space as 

well as the total volume (e.g., Brown 1989). Therefore, relating resistivity and permeability directly may be more relevant for 

deducing the fluid flow properties of fractures and faults. 

 

We present modelling that uses the similarities between the flow of electrical current and fluids to improve our understanding of the 

relationship between resistivity and permeability in fractured rocks. The work presented here summarises the work of Kirkby et al. 

(2016). The modelling is carried out on single rough fractures, constructed based on characteristics measured on rock fracture 

surfaces. Each fracture is progressively opened to investigate the changes in resistivity and permeability as the aperture is increased. 

This work may help to improve our understanding of resistivity anomalies resulting from the presence of fluid-filled fractures, 

characterized using techniques such as MT. It may also provide a proxy for experimental measurements of fracture permeability, 

which are time consuming, and therefore difficult to repeat sufficiently to produce results that apply generally. 

 

 

BACKGROUND 
Resistor networks 

Bahr (1997) used random resistor networks to evaluate the bulk electrical conductivity of rocks. In this type of analysis, electrical 

current is assumed to pass through a network of resistors. Resistors within this network can be defined to be open (i.e., high electrical 

conductivity) or closed (low conductivity). An electrical potential gradient is applied across the network and used, together with the 
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resistances in the network, to solve for the current passing through each resistor. The bulk resistivity is then calculated by summing 

the total current through the network and applying Ohm's Law. 

 

We extend the analysis of Bahr (1997) by considering resistors of variable resistance, and by considering fluid flow through the same 

network. The resistors represent a network of flat plates with varying apertures, corresponding to varying hydraulic conductivity. The 

open resistors can be compared the open parts of a fracture, filled with an electrically conductive fluid, whilst the closed resistors can 

be compared to the background host rock and/or parts of the fault that are closed or cemented with electrically and hydraulically 

resistive cement. Importantly, the conductivity is controlled not only by the number and aperture of open bonds, but also on their 

position within the network. 

 

Hydraulic and Electric resistance 

 

The resistance of the bonds can be calculated using an effective electrical and hydraulic resistance at each point within the fracture. 

In porous media, the hydraulic resistance can be described by Darcy's Law, which relates the volumetric fluid flow rate, Q, to the 

cross sectional area A, the permeability k, the fluid viscosity µ, and the pressure gradient  p: 

 

  
  

   
   (1) 

 

Combining Darcy’s Law with the steady-state solution to the Navier-Stokes equations for laminar fluid flow, Brown (1987) deduced 

an expression Q as a function of the fault aperture b, where ly is the cross-sectional area of the sample: 

 

    
  

   
   (2) 

 

These imply the permeability of the fracture is equal to b2/12 (Brown 1989). The hydraulic resistance is given by: 

 

   
     

   
 

 (3) (Brown 1989; Kirkby et al. 2016). 

 

In a fracture with a variable aperture, this equation can be evaluated pointwise on a discretised grid. This is known as the local cubic 

law (Brown, 1987). 

 

Likewise, Ohm’s Law relates electrical current I to the area A, resistivity ρ, and electrical potential gradient  p: 

 

  
 

 
      

 

 
   (4) 

 

From these, the electric resistance RE is given by: 

 

   
 

   
 (5) (Brown 1989; Kirkby et al. 2016). 

 

Brown (1989) used the above equations to model the electrical current and fluid flow through a single fracture, comparing the results 

to a global parallel plate model, where the fracture is assumed to consist of a pair of parallel plates with aperture b. Brown (1989) 

showed that it is necessary to consider variations in aperture within a fracture when the standard deviation of the surface height is 

greater than 20 % of the mean fracture aperture. 

 

One limitation of the parallel plate model is that assumes that the faces of each fault segment are parallel and horizontal, and that 

each segment of the fault face is long compared to the aperture. In reality, fracture topography varies strongly within a fracture, with 

the aperture fluctuations comparable to horizontal distance, and the two faces are not parallel (e.g., Brown and Scholz 1985; Brown 

1995). To account for this, a modified parallel plate model can be applied, which uses the solution to the Navier-Stokes equations in 

a wedge and also corrects for any additional distance in flow path length arising from sloping plates (Brush and Thomson 2003). This 

model has been shown to provide a good approximation to the full Navier-Stokes equations at low flow velocities such as those 

likely to be encountered in the subsurface (Brush and Thomson 2003). 

 

Fracture surface topography 

 

The aperture distribution is an important control on the electrical current and fluid flow through a fracture, and controls electrical 

current and fluid differently (Equations 3 and 5). Therefore it is important to accurately represent fracture aperture distribution to 

explore the relationship between the two properties. We determined the aperture by first constructing two synthetic opposing fracture 

surfaces and then separating them by a fixed amount. 

 

The topography of fracture surfaces have been shown to have power spectral density functions of the form: 

 

         (6) (Figure 1; Brown 1987) 

 

Where G is the power spectral density, f is the spatial frequency, and α is related to the fractal dimension D through 
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 (7) 

 

Fractal dimension ranges from about 2.2 to 2.6 in rock fractures (e.g. Brown, 1995; Glover et al., 1998; Matsuki et al., 2006; 

Ishibashi et al., 2015). Brown (1995) used this relationship to develop an algorithm for generating self-similar fracture surfaces, 

which uses the inverse Fourier transform to generate fractures with power spectral density functions described by Equations 6 and 7 

(Brown, 1995).  

 

  
Figure 1. Power spectrum for a synthetic fracture generated in this study. The power spectral density shown for one fault 

surface (black) and the fault aperture (grey). Also indicated is the mismatch wavelength cutoff used here, and the slope of the 

power spectrum, α, which is related to the fractal dimension through Equation 7. After Kirkby et al. (2016). 

 

 

METHOD 

 
Fault surface creation 

 

Two correlated fracture surfaces were generated using the method of Brown (1995) and Matsuki et al. (2006). In this method, the 

Fourier component α of each fracture surface is related to the fractal dimension D and the spatial frequencies p and q in the x and y 

direction, where l is the size of the fracture through: 

              
   

 
        (8) 

              
   

 
              (9) 

 

The surfaces differ by the random component R2, which is scaled by γ, which is defined with respect to a mismatch cutoff frequency, 

fc. The mismatch cutoff frequency value, and the function relating γ to frequency, has been treated differently by different authors 

(e.g. Glover et al. 1998a,b; Ogilvie et al. 2006; Matsuki et al., 2006), as discussed by Kirkby et al. (2016). We set γ to 1 above fc, and 

a linear function of frequency below fc (Kirkby et al. 2016): 

 

  {
          
 

  
        

  

 

Once the two fracture surfaces had been generated, they were then scaled and separated by a series of different fixed values for 

modelling. Overlapping parts of the fractures resulting in negative apertures were set to zero. The resulting apertures were then 

corrected to effective hydraulic and electric apertures based on the local slope of the two fracture planes and the angle between the 

two plates (Brush and Thomson 2003; Kirkby et al. 2016). These aperture values were then used to determine the hydraulic and 

electric resistance (Equations 3 and 5). An example of the resulting fracture surfaces and aperture distribution is shown in Figure 2. 

 

 

Resistance value 

 

The hydraulic and electrical resistance at each point in the resistor network, Ri,j, was calculated as a weighted harmonic mean of the 

resistance of the fracture itself, Rf i,j, and that of the surrounding matrix Rm: 

 
  

    
 

 

  
 

    

  
 (10)  

 

Where Δz is a fixed value representing the width of the fracture, and Rf i,j is defined by Equations 3 and 5 using the effective hydraulic 

and electric aperture described above (Kirkby et al. 2016). Taking a harmonic mean over a fixed width is necessary as it allows zero 

apertures to be handled without causing infinite resistance. We have set Δz to be equal to the maximum fault aperture, bmax, down to a 

minimum of 0.1 mm, for each fracture (Kirkby et al. 2016). This ensures that the minimum resistivity in any given fracture is equal 

Relating Electrical Resistivity to Permeability Using Resistor Networks Kirkby & Heinson et al.

ASEG-PESA-AIG 2016 August 21–24, 2016, Adelaide, Australia3



 

 

 

to the fluid resistivity, and the maximum is the matrix resistivity. Likewise, the permeability in the fracture ranges from the matrix 

permeability to bmax
2/12. If Δz were to be set to some value greater than bmax, this would reduce the resistivity and permeability of 

parts of the fracture with large apertures but have no effect on zero apertures. On the other hand, if Δz is less than bmax, this would 

increase the resistivity above the matrix value, and reduce the permeability below the matrix value, at small apertures. The minimum 

Δz value was set to avoid very high resistances for fractures with small maximum apertures. 

 

 
Figure 2. The key features of the setup used for modelling fluid flow and current through fractures including the aperture b 

and the effective hydraulic aperture bh, corrected for the angle θ between the two plates and any extra path length resulting 

from the slope of the two plates. The two surfaces shown have dimensions of 100  100 mm and a horizontal resolution of 

0.25 mm. They were created using a fractal dimension of 2.4 and are scaled such that the standard deviation of the surface 

height equals 0.48 mm. Modified after Kirkby et al. (2016). 

 

Modelling approach 

 

We have followed the approach of Bahr (1997) to solve the resistor network. A potential difference was applied along the fracture, 

with no current leaving or entering the sides. Kirchhoff’s Law was applied in each node, and the electrical potential was assumed to 

sum to zero in each elementary cell. Likewise, for the permeability, a pressure difference was applied along the fracture, with no-

flow boundary conditions set for the fracture sides. Mass was assumed to be conserved in each node and the pressure was assumed to 

sum to zero in each elementary cell. 

 

A series of equations was then constructed and solved to determine the current and fluid flow in each resistor. The total current and 

fluid flow through each end of the fracture was then summed and then used in Equations 1 and 4 together with the fixed potential and 

pressure difference and the Δz value to calculate an effective electrical conductivity and permeability for the fracture. 

 

The resistor network approach implies that the electrical conduction pathways are independent of the absolute resistivities but depend 

on their ratio. Therefore, we discuss the electrical conductivity of the fracture in terms of the ratio of the rock matrix to fluid 

resistivity, defined here as m. Likewise, we define the ratio of the matrix to fracture resistivity as M. 

 

Input parameters 

 

Kirkby et al (2016) modelled a total of 760 parameter combinations to identify the main controls on fracture permeability and 

resistivity. These included incrementally increasing the separation between the fracture surfaces to simulate opening of a fracture, 

varying the ratio m, and also the rock matrix permeability. A total of 200 repeats on different fractures were carried out, using 

different random number seeds to generate the fractures. This process was also repeated three different horizontal offsets between the 

two fracture surfaces. 

 

Here, we present a subset of the modelling results presented by Kirkby et al. (2016), using a fracture with no horizontal offset, a rock 

matrix permeability of 1018 m2, and m equal to 104, with modelling carried out over 20 fault separation values. The fractal dimension 
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was set to 2.4 and the fracture surface heights were scaled such that their standard deviation was equal to 0.48 mm. The fracture 

resolution was 0.25 mm and the fracture size was 100   100 mm; 400   400 cells (Kirkby et al. 2016). 

 

 

RESULTS 
Base case 

 

Figure 3a shows the fracture permeability as a function of M. Figure 3b shows fracture permeability and electrical conductivity as a 

function of arithmetic mean aperture. Figure 4 shows the fluid and current passing through a fracture at two different separation 

values indicated by white stars and triangles in Figure 3. 

 

 
Figure 3. Changes in fracture conductivity (expressed in terms of the ratio M) and permeability as the fracture is opened, for 

fractures with no offset, within a matrix with permeability 10
-18

 m
2
, with m equal to 10

4
. (a) Permeability as a function of M. 

(b) Permeability (black) and M (grey) as a function of arithmetic mean fracture aperture. Position of percolation threshold 

and levelling off point for the fracture in Figure 4 indicated as white stars and triangles respectively. Dashed lines show the 

permeability and resistivity ratio m for a flat plate model with equivalent mean aperture. After Kirkby et al. (2016). 

 
Figure 4. Fluid and current flow along a fracture with no horizontal offset but with two different separation values. (a) 

Aperture distribution, (b) electrical current and (c) fluid flow for a fracture in which the fault surfaces have been separated 

by -0.006 mm. This fracture is at its percolation threshold. (d) Aperture distribution, (e) electrical current and (f) fluid flow 

for a fracture with a separation of 0.000 mm. This fracture is above its percolation threshold. After Kirkby et al. (2016). 

 

The electrical conductivity and permeability increase moderately with aperture at apertures less than about 0.02 mm (Figure 3b; 

Kirkby et al. 2016). After this point, the fractures reach a percolation threshold and both properties increase more rapidly. 

Permeability increases by a factor of about 104 over an aperture change of about 0.01 mm, while M increases by a factor of 10 over 

an aperture change of around 0.02 mm. The precise position of the percolation threshold differs for each of the 200 fractures shown 

in Figure 3, a result of small differences in the fracture topography and resulting aperture distribution arising from the different set of 

random number seeds used to generate each fracture. Above a mean aperture of 0.03 mm, permeability levels off with respect to 

aperture, while M levels off later, at a mean aperture of about 0.07 mm. 
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The rate of increase in electrical conductivity at the percolation threshold is lower than the permeability, and therefore the percolation 

threshold in permeability can be defined with respect to M. The percolation threshold for the fracture presented in Figure 4 occurs 

where M is equal to about 30. So when this fracture is below the percolation threshold it increases the permeability by a small amount 

(to around 10-16 m2), and the resistivity by a factor of 30. A slight increase in aperture (~0.01 mm) increases the conductivity to a 

factor of 50, but the permeability increases to 2 10-13 m2. 

 

The fracture shown in Figure 4a-c has a separation of -0.006 mm (i.e. the surfaces were shifted together) and is at the percolation 

threshold. Figure 4d-f shows the same fracture with a separation of 0 mm; here it is above the percolation threshold. The percentage 

contact area between the fracture surfaces in each case is 53 and 49 % respectively. These examples demonstrate the strong 

differences in the passage of electrical current and fluids through a fracture over its percolation threshold. 

 

 

Influence of rock and fluid properties, offset and spacing 

 

Kirkby et al. (2016) also modelled eight other m ratios ranging from 3 to 3 104, matrix permeability values of 1014 and 1016 m2, and 

fault offsets of 0.5, 2.5, and 10.0 mm. In addition, the effect of the mean spacing between faults was assessed by recalculating the 

effective resistivity and permeability values obtained for individual faults for faulted rock volumes with widths (perpendicular to the 

fault plane) of 1 mm, 10 mm, and 100 mm. 

  

Varying the matrix permeability does not substantially change the percolation behaviour that is observed, except for raising the 

permeability at low apertures. 

 

Varying m affects the shape of the resistivity percolation curve and therefore the permeability – resistivity relationship (Kirkby et al. 

2016). As might be expected, increasing m increases the value of M at the percolation threshold, MPT. However, MPT decreases as a 

proportion of m. Where m equals 100, MPT is equal to around 4, i.e. 4% of m. Where m equals 3 104 however, MPT ≈ 60, only 0.2% 

of m (Kirkby et al. 2016). This is because the matrix contribution to the passage of current through the fracture decreases as m 

increases, and the aperture distribution controls the fracture resistivity to a greater extent. As a result, the resistivity increase starts 

later but is sharper than for low values of m (Kirkby et al. 2016).  

 

Increasing the offset between the fault surfaces increases the mean aperture at the percolation threshold to much the same value for 

both permeability and resistivity (Kirkby et al. 2016). Therefore, the effect on the resistivity – permeability relationship is smaller. 

The value of MPT at the percolation threshold increases for small offsets (≤0.5 mm) but then decreases again for greater offsets. 

 

Resistivity is affected more by increasing the spacing between faults than permeability. This is because the permeability of an 

individual fracture typically increases by several orders of magnitude over the percolation threshold, while the conductivity generally 

increases by a factor of ten or less over the same aperture change (Kirkby et al. 2016). Therefore, even though both properties are 

reduced proportionally by the same amount when averaged over a wide volume, the effect on electrical conductivity is greater. The 

effect is lessened in faults with a greater amount of offset: as mentioned above, faults with greater offsets are wider, and therefore 

take up a greater volume.  

 

 

CONCLUSION 

We have presented modelling that explores the changes in the resistivity and permeability of fractures as they open. As the fault 

separation increases, both the electrical and hydraulic conductivity increase, initially at a similar rate. Once the fault reaches its 

percolation threshold, both properties increase more rapidly (Kirkby et al. 2016). The permeability increases by at least three orders 

of magnitude over changes in aperture of less than 0.1 mm (<0.01 mm for faults with offsets of 0.5 mm or less), while the resistivity 

only changes by up to one order of magnitude, depending on the ratio of matrix to fluid resistivity. 

 

Permeability increases more rapidly and by a greater amount than resistivity, and therefore the percolation threshold in permeability 

can also be defined with respect to the resistivity (Kirkby et al. 2016). The ratio of the fracture resistivity to that of the matrix at the 

percolation threshold, MPT, increases with m, but decreases as a proportion of m. This reflects a decrease in the contribution of the 

matrix to the overall fracture conductivity as m increases. Increasing the offset on faults increases the mean aperture at the 

percolation threshold, but it affects both the permeability and resistivity similarly, so the relationship between permeability and 

resistivity is not strongly affected. Increasing the spacing, however, affects the resistivity much more than the permeability, and so 

MPT decreases strongly with increasing fault spacing. 

 

The change in mean fault aperture across the percolation threshold varies by less than 0.1 mm. However, the electrical and hydraulic 

properties can vary strongly. Therefore, small differences in, for example, the local stress field in different areas may be enough to 

put fractures above their percolation threshold, resulting in large changes in resistivity and permeability (Kirkby et al. 2016). As a 

result, areas that are similar geologically may exhibit strong differences in electrical and hydraulic properties arising not from 

lithological differences but from differences in the stress field. These differences may be detectable using techniques such as MT that 

are sensitive to variations in resistivity with orientation. 
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