Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells

Anna Zuppini A B , Valentina Bugno A and Barbara Baldan A
+ Author Affiliations
- Author Affiliations

A Dipartimento di Biologia, Università di Padova, via U. Bassi 58 / B, 35131 Padova, Italy.

B Corresponding author. Email: zuppini@civ.bio.unipd.it

Functional Plant Biology 33(7) 617-627 https://doi.org/10.1071/FP06015
Submitted: 17 January 2006  Accepted: 29 March 2006   Published: 3 July 2006

Abstract

Programmed cell death (PCD) is a common form of cellular demise during plant response to environmental stresses. The pathway of PCD has been partially clarified in plants although the underlying molecular mechanisms are still poorly defined. We have investigated the signalling cascade induced by a mild heat treatment causing PCD in soybean cells (Glycine max L.). The data show that heat shock led to the onset of PCD in soybean cells involving H2O2 production and mitochondrial damage. Cytochrome c release accompanies the presence of caspase 9-like and caspase 3-like protease activities. Concomitantly, cells were severely damaged with a progressive cell shrinkage, chloroplast alteration and detachment of the plasma membrane from the cell wall. Chromatin condensation and DNA damage were observed. It is proposed that a mild heat stress induces PCD in soybean cells through a caspase-like-dependent pathway.

Keywords: caspase-like activity, heat shock, mitochondria, programmed cell death, soybean cells.


Acknowledgments

We thank G Neuhaus (Freiburg, Germany) for kindly providing the soybean suspension cells (SB-P), and A Vitale (Milano, Italy) for the kind gift of the tobacco anti-BiP antibody. The authors are grateful to P Mariani and L Navazio (Dipartimento di Biologia, Padova, Italy) for fruitful suggestions and discussion. This work was supported by funds from the University of Padova (to BB) and by grants from PRIN (prot. 2004052535_003).


References


Allan AC, Maddumage R, Simons JL, Neill SO, Ferguson IB (2006) Heat-induced oxidative activity protects suspension-cultured plant cells from low temperature damage. Functional Plant Biology 33, 67–76.
Crossref | GoogleScholarGoogle Scholar | open url image1

Aviv DH, Rusterucci C, Iii BF, Dietrich RA, Parker JE, Dangl JL (2002) Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1 / NPR1-dependent. The Plant Journal 29, 381–391.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Letters 463, 151–154.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. The Plant Journal 34, 573–583.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Beere HM, Green DR (2001) Stress management — heat shock protein-70 and the regulation of apoptosis. Trends in Cell Biology 11, 6–10.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Beers EP, McDowell JM (2001) Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Current Opinion in Plant Biology 4, 561–567.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cascardo JCM, Almeida RS, Buzeli RAA, Carolino SMB, Otoni WC, Fontes EPB (2000) The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. Journal of Biological Chemistry 275, 14494–14500.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chen H-M, Zhou J, Dai Y-R (2000) Cleavage of lamin-like proteins in in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Letters 480, 165–168.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Danon A, Delorme V, Mailhac N, Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiology and Biochemistry 38, 647–655.
Crossref | GoogleScholarGoogle Scholar | open url image1

Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p53 and defender against apoptotic death. Journal of Biological Chemistry 279, 779–787.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. The Biochemical Journal 330, 115–120.
PubMed |
open url image1

Dunn SR, Thomason JC, Le Tissier MD, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death and Differentiation 11, 1213–1222.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eason JR, Ryan DJ, Pinkney TT, O’Donoghue EM (2002) Programmed cell death during flower senescence: isolation and characterization of cysteine proteinases from Sandersonia aurantiaca. Functional Plant Biology 29, 1055–1064.
Crossref | GoogleScholarGoogle Scholar | open url image1

Flores-Diaz M, Higuita J-C, Florin I, Okada T, Pollesello P, Bergman T, Thelestam M, Mori K, Alape-Giron A (2004) A cellular UDP-glucose deficiency causes overexpression of glucose / oxygen-regulated protein independent of the endoplasmic reticulum stress elements. Journal of Biological Chemistry 21, 21 724–21 731.
Crossref | GoogleScholarGoogle Scholar | open url image1

Foglieni C, Meoni C, Davalli AM (2001) Fluorescent dyes for cell viability: an application on prefixed conditions. Histochemistry and Cell Biology 115, 223–229.
PubMed |
open url image1

Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cellular Microbiology 6, 201–211.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hampton RY (2000) ER stress response: getting the UPR hand on misfolded proteins. Current Biology 10, R518–R521.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305, 855–858.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hoeberichts FA, Woltering EJ (2003) Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays 25, 47–57.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hood DA, Zak R, Pette D (1989) Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits. European Journal of Biochemistry 179, 275–280.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim HJ, Lee KJ (2002) Heat shock and ceramide have different apoptotic pathways in radiation induced fibrosarcoma (RIF) cells. Molecular and Cellular Biochemistry 229, 139–151.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim MC, Lee SH, Kim JK, Chun HJ, Choi MS , et al. (2002) Mlo, a modulator of plant defence and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. Journal of Biological Chemistry 277, 19304–19314.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kim YK, Jang SK (2002) Continuous heat shock enhances translational initiation directed by internal ribosomal entry site. Biochemical and Biophysical Research Communications 297, 224–231.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koizumi N (1996) Isolation and responses to stress of a gene that encodes a luminal binding protein in Arabidopsis thaliana. Plant & Cell Physiology 37, 862–865.
PubMed |
open url image1

Korthout HA, Berecki G, Bruin W, van Duijn B, Wang M (2000) The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Letters 475, 139–144.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant, Cell & Environment 23, 337–350.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kruglov SV, Baida LA, Pshennikova MG, Larinov NP, Manukhina EB, Malyshev IY (2002) Adaptation to heat limits stress-induced activation of caspases in thymus. Bulletin of Experimental Biology and Medicine 134, 321–324.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lam E (2004) Controlled cell death, plant survival and development. Nature Reviews. Molecular Cell Biology 5, 305–315.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lam E, Pontier D, del Pozo O (1999) Die and let live – programmed cell death in plants. Current Opinion in Plant Biology 2, 502–507.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Current Biology 6, 427–437.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes & Development 17, 2636–2641.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye G, Revillard JP (1995) Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21, 275–283.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

LoSchiavo F, Baldan B, Compagnin D, Ganz R, Mariani P, Terzi M (2000) Spontaneous and induced apoptosis in embryogenic cell cultures of carrot (Daucus carota L.) in different physiological states. European Journal of Cell Biology 79, 294–298.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matsuki S, Iuchi Y, Ikeda Y, Sasagawa I, Tomita Y, Fujii J (2003) Suppression of cytochrome c release and apoptosis in testes with heat stress by minocycline. Biochemical and Biophysical Research Communications 312, 843–849.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. The Plant Journal 12, 267–280.
Crossref | GoogleScholarGoogle Scholar | open url image1

McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends in Biochemical Sciences 25, 79–82.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mirkes PE, Little SA (2000) Cytochrome c release from mitochondria of early post implantation murine embryos exposed to 4-hydroperoxycyclophosphamide, heat shock, and staurosporin. Toxicology and Applied Pharmacology 162, 197–206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mlejnek P, Prochàzka S (2002) Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta 215, 158–166.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98–103.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP, Lozyk M, Goping IS, Opas M, Bleackley RC, Green DR, Michalak M (2000) Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. Journal of Cell Biology 150, 731–740.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Navazio L, Baldan B, Dainese P, James P, Damiani E, Margreth A, Mariani P (1995) Evidence that spinach leaves express calreticulin but not calsequestrin. Plant Physiology 109, 983–990.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Current Opinion in Plant Biology 5, 388–395.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nilsen ET , Orcutt DM (1996) ‘The physiology of plants under stress: abiotic factors.’ (J Wiley and Sons: New York)

Orrenius S (2004) Mitochondrial regulation of apoptotic cell death. Toxicology Letters 149, 19–23.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Paula-Lopes FF, Hansen PJ (2002) Apoptosis is an adaptive response in bovine preimplantation embryos that facilitates survival after heat shock. Biochemical and Biophysical Research Communications 295, 37–42.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. Journal of Biological Chemistry 276, 33869–33874.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to cell death program: role of the ER chaperone GRP78. FEBS Letters 514, 122–128.
PubMed |
open url image1

Repka V (2001) Elicitor-stimulated induction of defence mechanisms and defence gene activation in grapevine cell suspension cultures. Biologia Plantarum 44, 555–565.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sanmartín M, Jaroszewski L, Raikhel NV, Rojo E (2005) Caspases. Regulating death since the origin of life. Plant Physiology 137, 841–847.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sieger KA, Mhashilkar AM, Stewart A, Sutton RB, Strube RW , et al. (2004) The tumor suppressor activity of MDA-7 / IL-24 is mediated by intracellular protein expression in NSCLC cells. Molecular Therapy 9, 355–367.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell 11, 431–444.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sreedhar AS, Pardhasaradhi BV, Khar A, Srinivas UK (2002) A cross talk between cellular signalling and cellular redox state during heat-induced apoptosis in a rat histiocytoma. Free Radical Biology & Medicine 32, 221–227.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Srere PA (1969) Citrate synthase. Methods in Enzymology 13, 3–11. open url image1

Sun Y, Zhao Y, Hong X, Zhai Z (1999) Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Letters 462, 317–321.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Szegezdi E, Fitzgerald U, Samali A (2003) Caspase-12 and ER-stress-mediated apoptosis: the story so far. Annals of the New York Academy of Sciences 1010, 186–194.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tian R, Zhang GY, Yan CH, Dai YR (2000) Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Letters 474, 11–15.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences USA 76, 4350–4354.
Crossref |
open url image1

Vacca A, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiology 134, 1100–1112.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weber GF, Daley J, Kraeft SK, Chen LB, Cantor H (1997) Measurement of apoptosis in heterogenous cell populations. Cytometry 27, 136–144.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods in Enzymology 233, 182–189. open url image1

Woltering EJ, Van Der Bent A, Hoeberichts FA (2002) Do plant caspases exist? Plant Physiology 130, 1764–1769.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zuppini A, Groenendyk J, Cormack LA, Shore G, Opas M, Bleackley RC, Michalak M (2002) Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis. Biochemistry 41, 2850–2858.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zuppini A, Navazio L, Mariani P (2004a) Endoplasmic reticulum stress-induced programmed cell death in soybean cells. Journal of Cell Science 117, 2591–2598.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P (2004b) Chitosan induces Ca2+-mediated programmed cell death in soybean cells. New Phytologist 161, 557–568.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P (2005) An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. Molecular Plant–Microbe Interactions 18, 849–855.
PubMed |
open url image1