Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress

José Javier Peguero-Pina A , Domingo Sancho-Knapik A , Fermín Morales B , Jaume Flexas C and Eustaquio Gil-Pelegrín A D
+ Author Affiliations
- Author Affiliations

A Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, Apdo. 727, 50080 Zaragoza, Spain.

B Department of Plant Nutrition, Experimental Station of Aula Dei, CSIC, Apdo. 13034, 50080 Zaragoza, Spain.

C Laboratori de Fisiologia Vegetal, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07071, Palma de Mallorca, Balears, Spain.

D Corresponding author. Email: egilp@aragon.es

Functional Plant Biology 36(5) 453-462 https://doi.org/10.1071/FP08297
Submitted: 21 November 2008  Accepted: 6 March 2009   Published: 6 May 2009

Abstract

The ability of three Mediterranean oaks (Quercus coccifera L., Quercus ilex ssp. ballota (Desf.) Samp and Quercus suber L.) to cope with intense drought was investigated. Water stress reduced stomatal conductance and photosynthesis in these species. Drought-mediated changes in photosynthetic-related parameters allowed the characterisation of the specific photo-protective mechanisms. Specifically, Q. suber downregulated photosynthetic electron transport rates (ETR) closing PSII reaction centres (i.e. decreasing photochemical quenching) and through an antheraxanthin (A) + zeaxanthin (Z)-mediated diminished intrinsic PSII efficiency (Φexc.). These changes were lower in Q. coccifera and Q. ilex ssp. ballota, which decreased further ETR photo-inactivating PSII centres (evidenced by their low predawn Fv/Fm ratios at high water stress). The predawn Fv/Fm ratio decreased in Q. coccifera largely due to Fm decreases, whereas in Q. ilex ssp. ballota Fv/Fm decreases were due to F0 increases, below –4 MPa. These Fv/Fm decreases were well correlated with increases in the A + Z photo-protective pigments. An analysis of dark respiration and photorespiration as alternative electron sinks under intense drought stress also revealed interspecific differences. The largest imbalance between electrons generated and consumed increased potentially oxidative damage in Q. suber. Subsequently, only Q. suber showed loss of chlorophyll, which is one of the main targets of oxidative damage. Data suggest that Q. coccifera and Q. ilex ssp. ballota seem more able than Q. suber to withstand highly xeric conditions. Therefore, our results question the consideration of Mediterranean evergreen oaks as a homogeneous physiological group.

Additional keywords: morphological convergence, photoprotection, physiological performance, Quercus, summer aridity, water stress.


Acknowledgements

We thank CITA-DGA for technical support. This work was supported by the Spanish Ministry of Education and Science projects AGL2004–00194/AGR and BFU2004–05096/BFI, and by an University of Valencia/EEAD-CSIC contract – within the ESA ESRIN contract 19187/05/I-EC – to F. M. Moreover, this study was partially supported by INIA project SUM2008–00004-C03–03 (Ministerio de Ciencia e Innovación). Financial support from Gobierno de Aragón (A03 research group) is also acknowledged.


References


Abadía J , Abadía A (1993) Iron and plant pigments. In ‘Iron chelation in plant and soil microorganisms’. pp. 327–344. (Academic Press: San Diego)

Abadía J, Morales F, Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant and Soil 215, 183–192.
Crossref | GoogleScholarGoogle Scholar | open url image1

Acherar M, Rambal S (1992) Comparative water relations of four Mediterranean oak species. Vegetatio 99–100, 177–184.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ackerly DD (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. American Naturalist 163, 654–671.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Balaguer L, Pugnaire FI, Martínez-Ferri E, Armas C, Valladares F, Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil 240, 343–352.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Baquedano FJ, Castillo FJ (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees – Structure and Function 20, 689–700.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the abscense of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. The Plant Cell 15, 992–1008.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Belkhodja R, Morales F, Quílez R, López-Millán AF, Abadía A, Abadía J (1998) Iron deficiency causes changes in chlorophyll fluorescence dur to the reduction in the dark of the photosystem II acceptor side. Photosynthesis Research 56, 265–276.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170, 489–504.
Crossref | GoogleScholarGoogle Scholar | open url image1

Breckle SW (2002) ‘Walter’s vegetation of the earth.’ (Springer-Verlag: Berlin)

Brodribb TJ, Holbrook NM (2004) Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperm. New Phytologist 162, 663–670.
Crossref | GoogleScholarGoogle Scholar | open url image1

Burghardt M , Riederer M (2006) Cuticular transpiration. In ‘Biology of the plant cuticle’. pp. 292–311. (Blackwell Publishing: Oxford)

Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees – Structure and Function 16, 465–472.
Crossref | GoogleScholarGoogle Scholar | open url image1

Corcuera L, Camarero JJ, Gil-Pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees – Structure and Function 18, 83–92.
Crossref | GoogleScholarGoogle Scholar | open url image1

Corcuera L, Morales F, Abadía A, Gil-Pelegrín E (2005) Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula. Tree Physiology 25, 599–608.
CAS | PubMed |
open url image1

Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrín E (2006) Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees – Structure and Function 20, 91–98.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cornic G, Briantais JM (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183, 178–184.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Demmig-Adams B, Adams WW (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plants. Planta 198, 460–470.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Demmig-Adams B, Adams WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98, 253–264.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist 172, 11–21.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Demmig-Adams B, Ebbert V, Mellman DE, Mueh KE, Schaffer L, Funk C, Zarter R, Adamska I, Jansson S, Adams WW (2006) Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiologia Plantarum 127, 670–680.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Epron D, Dreyer E (1992) Effect of a severe dehydration on leaf photosynthesis in Quercus petraea (Mtt.) Liebl.: photosystem II and electrolyte leakage. Tree Physiology 10, 273–284.
CAS | PubMed |
open url image1

Epron D, Dreyer E (1993) Photosynthesis of oak leaves under water stress: maintenance of high photochemical efficiency of photosystem II and occurrence of non-uniform CO2 assimilation. Tree Physiology 13, 107–117.
CAS | PubMed |
open url image1

Epron D, Dreyer E, Aussenac G (1993) A comparison of photosynthetic responses to water stress in seedlings from 3 oak species: Quercus petraea (Matt.) Liebl., Q. rubra L. and Quercus cerris L. Annals of Forest Science 50, 48s–60s.
Crossref | GoogleScholarGoogle Scholar | open url image1

Esteso-Martínez J, Camarero JJ, Gil-Pelegrín E (2006a) Competitive effects of herbs on Quercus faginea seedlings inferred from vulnerability curves and spatial-pattern analyses in a Mediterranean stand (Iberian System, northeast Spain). Ecoscience 13, 378–387.
Crossref | GoogleScholarGoogle Scholar | open url image1

Esteso-Martínez J, Valladares F, Camarero JJ, Gil-Pelegrín E (2006b) Crown architecture and leaf habit are associated with intrinsically different light-harvesting efficiencies in Quercus seedlings from contrasting environments. Annals of Forest Science 63, 511–518.
Crossref | GoogleScholarGoogle Scholar | open url image1

Faria T, Silverio D, Breia E, Cabral R, Abadía A, Abadía J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiologia Plantarum 102, 419–428.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Flexas J, Medrano H (2002) Drought inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89, 183–189.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Flexas J, Escalona JM, Medrano H (1998) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Australian Journal of Plant Physiology 25, 893–900.
Crossref | GoogleScholarGoogle Scholar | open url image1

Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology 29, 461–471.
Crossref | GoogleScholarGoogle Scholar | open url image1

Galmés J, Abadía A, Cifre J, Medrano H, Flexas J (2007) Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiologia Plantarum 130, 495–510.
Crossref | GoogleScholarGoogle Scholar | open url image1

Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92.
CAS |
open url image1

Guan XQ, Zhao SJ, Li DQ, Shu HR (2004) Photoprotective function of photorespiration in several grapevine cultivars under drought stress. Photosynthetica 42, 31–36.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of Photosystems I and II in pea leaves. Plant Physiology 90, 1029–1034.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Havaux M (1992) Photoacustic measurements of cyclic electron flow around photosystem I in leaves adapted to light-states 1 and 2. Plant & Cell Physiology 33, 799–803.
CAS |
open url image1

Jarvis AJ, Davies WJ (1997) Whole plant water flux and the regulation of water loss by plants. Plant, Cell & Environment 20, 521–527.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kerstiens G (1996) Cuticular water permeability and its physiological significance. Journal of Experimental Botany 47, 1813–1832.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kitajima H, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta 376, 105–115.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86, 180–187.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Kummerov J (1973) Comparative anatomy of sclerophylls of Mediterranean climate areas. In ‘Mediterranean-type ecosystems: origin and structure’. pp. 213–224. (Springer-Verlag: Berlin)

Kyparissis A, Drilias P, Manetas Y (2000) Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms. Australian Journal of Plant Physiology 27, 265–272.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Larbi A, Abadía A, Morales F, Abadía J (2004) Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynthesis Research 79, 59–69.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lo Gullo MA, Salleo S (1988) Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytologist 108, 267–276.
Crossref | GoogleScholarGoogle Scholar | open url image1

Martín-Albertos S , Díaz Fernández PM , De Miguel J (1998) ‘Regiones de procedencia de especies forestales españolas.’ (Organismo Autónomo Parques Nacionales: Madrid)

Martínez-Vilalta J, Mangirón M, Ogaya R, Sauret M, Serrano L, Peñuelas J, Piñol J (2003) Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiology 23, 747–758.
PubMed |
open url image1

Mediavilla S, Escudero A (2003) Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Tree Physiology 23, 987–996.
PubMed |
open url image1

Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiology 97, 886–893.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Morales F, Abadía A, Abadía J (1998) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Australian Journal of Plant Physiology 25, 403–412.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Morales F, Abadía A, Abadía J, Montserrat G, Gil-Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees – Structure and Function 16, 504–510.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Morales F , Abadía A , Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In ‘Photoprotection, photoinhibition, gene regulation, and environment’. pp. 65–85. (Springer: Dordrecht, The Netherlands)

Munné-Bosch S, Alegre L (2000) The significance of β-carotene, α-tocopherol and the xanthophyll cycle in droughted Melissa officinalis plants. Australian Journal of Plant Physiology 27, 139–146.
Crossref | GoogleScholarGoogle Scholar | open url image1

Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology 50, 333–359.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Peguero-Pina JJ, Morales F, Flexas J, Gil-Pelegrín E, Moya I (2008) Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia 156, 1–11.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pfündel EE, Dilley RA (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiology 101, 65–71.
PubMed |
open url image1

Poole DK, Miller PC (1975) Water relations of selected species of chaparral and coastal communities. Ecology 56, 1118–1128.
Crossref | GoogleScholarGoogle Scholar | open url image1

Salleo S, Lo Gullo MA (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Annals of Botany 65, 259–270. open url image1

Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressures in vascular plants. Science 148, 339–346.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology 104, 13–23.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tenhunen JD, Lange OL, Braun M (1981) Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. Oecologia 50, 5–11.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tourneux C, Peltier G (1995) Effect of water deficit on photosynthetic oxygen measured using 18O2 and mass spectrometry in Solanum tuberosum L. leaf discs. Planta 195, 570–577.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Traiser C, Klotz S, Uhl D, Mosbrugger V (2005) Environmental signals from leaves – a physiognomic analysis of European vegetation. New Phytologist 166, 465–484.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Turner NC (1988) Measurement of plant water status by the pressure chamber technique. Irrigation Science 9, 289–308.
Crossref | GoogleScholarGoogle Scholar | open url image1

Turner IM (1994) Sclerophylly: primarily protective? Functional Ecology 8, 669–675.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Annals of Forest Science 53, 173–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

van Kooten O, Snel JHF (1990) The use of chlorophyll fluorescence in plant stress physiology. Photosynthesis Research 25, 147–150.
Crossref | GoogleScholarGoogle Scholar | open url image1

Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A (2003) ‘Convergent’ traits of mediterranean woody plants belong to pre-mediterranean lineages. Biological Journal of the Linnean Society. Linnean Society of London 78, 415–427.
Crossref | GoogleScholarGoogle Scholar | open url image1

Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. Journal of Experimental Botany 54, 2015–2024.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zarter CR, Adams WW, Ebbert V, Adamska I, Jansson S, Demmig-Adams B (2006) Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. Plant, Cell & Environment 29, 869–878.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1