Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Transcriptional regulation of phosphate transporters from Lolium perenne and its mycorrhizal symbionts in response to phosphorus supply

Qianhe Liu A , Anthony J. Parsons B , Hong Xue A , Chris S. Jones A and Susanne Rasmussen A B C
+ Author Affiliations
- Author Affiliations

A AgResearch, Tennent Drive, PB 11 008, Palmerston North 4442, New Zealand.

B Present address: Institute of Agriculture and Environment, Massey University, Palmerston North 4474, New Zealand.

C Corresponding author. Email: s.rasmussen@massey.ac.nz

Functional Plant Biology 42(1) 1-8 https://doi.org/10.1071/FP14043
Submitted: 3 February 2014  Accepted: 25 June 2014   Published: 28 August 2014

Abstract

Phosphate (P) uptake is critical for plant growth, but to date little is known about P uptake and transport in the pasture grass Lolium perenne L. We have identified a putative P transporter (PT) from L. perenne mycorrhizal roots (LpPT1) and assessed its transcriptional regulation by soil P availability and mycorrhizal colonisation. We also investigated transcript levels of fungal PTs from the two arbuscular mycorrhizal species Rhizophagus intraradices and Funneliformis mosseae. Our analyses indicated that LpPT1 codes for a high affinity PT most likely responsible for direct P uptake from the soil. LpPT1 is highly expressed in roots of plants grown at low P, whereas high P repressed its expression. LpPT1 was not expressed in above-ground plant tissues. Colonisation with R. intraradices did not affect expression of LpPT1 significantly. Transcript levels of the R. intraradices PT were not affected by P availability but the F. mosseae PT was repressed by high P supply, particularly in intraradical hyphae. Our study could assist in deciphering the molecular mechanisms of P uptake in the pasture grass L. perenne.

Additional keywords: Funneliformis (Glomus) mosseae, perennial ryegrass, Rhizophagus (Glomus) intraradices, transcript profiling.


References

Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In ‘Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology’. pp. 28–36. (AAAI Press: Menlo Park, CA, USA)

Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15, 620–627.
Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SqtL%2FE&md5=10ed1fdad6f154bf1701e8212ad95702CAS | 16133249PubMed |

Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173, 11–26.
Functional biology of plant phosphate uptake at root and mycorrhiza interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1antrs%3D&md5=da0364c24474e28ec65e0d8ba2446547CAS | 17176390PubMed |

Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist 165, 899–912.
Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability.Crossref | GoogleScholarGoogle Scholar | 15720701PubMed |

Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. The Plant Journal 25, 281–293.
The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlKnu7o%3D&md5=8a59fdb7f71d4e7db6fecd56d2c1afd7CAS | 11208020PubMed |

Davies TGE, Ying Y, Xu Q, Li ZS, Li J, Gordon-Weeks R (2002) Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant, Cell & Environment 25, 1325–1339.
Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVCqsrg%3D&md5=1bd377441cc97170a97d3a2b43ee2834CAS |

Gilbert N (2009) The disappearing nutrient. Nature 461, 716–718.
The disappearing nutrient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CisbrK&md5=9830f6272424aaa5a0bb351e88d1b9b7CAS | 19812648PubMed |

Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222, 688–698.
Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyntr%2FF&md5=c8d69637afd97c75416f994eb8b3f4c1CAS | 16133217PubMed |

Harrison MJ, van Buuren ML (1995) Phosphate transporter from the arbuscular mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.
Phosphate transporter from the arbuscular mycorrhizal fungus Glomus versiforme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVChsbo%3D&md5=97d84d3c7627740bf4b2bc364cbc1fbfCAS | 8524398PubMed |

Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell 14, 2413–2429.
A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFels7Y%3D&md5=7aad8a96e9cd333092a5d3936360902fCAS | 12368495PubMed |

Huang CY, Shirley NS, Genc Y, Shi B, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiology 156, 1217–1229.
Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWksrw%3D&md5=526f49d2a6153bc707c4f213c833d6dbCAS | 21606317PubMed |

Jakobsen L, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115, 77–83.
Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants.Crossref | GoogleScholarGoogle Scholar |

Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell & Environment 30, 310–322.
Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlemu7o%3D&md5=aab835926b8bcd062c3f51bc01dc7dadCAS |

Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 10, 22–29.
Symbiotic phosphate transport in arbuscular mycorrhizas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFaruw%3D%3D&md5=6dd8bc9dbfc0a9cae39e8ea7ea468fb3CAS | 15642520PubMed |

Leggewie G, Willmitzer L, Riesmeier JW (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. The Plant Cell 9, 381–392.
Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFWqtrs%3D&md5=03dbecfdd60f032a7edfeb2be064db2dCAS | 9090882PubMed |

Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant–Microbe Interactions 11, 14–22.
Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFertw%3D%3D&md5=894b674a6930e86a915aa13c15482a33CAS | 9425684PubMed |

Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Functional Ecology 25, 910–920.
Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content.Crossref | GoogleScholarGoogle Scholar |

Liu Q, Parsons AJ, Xue H, Jones CS, Rasmussen S (2013) Functional characterisation and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae. Fungal Genetics and Biology 54, 52–59.
Functional characterisation and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFOnur0%3D&md5=c544b2cd71514ebcf48213281c06f8b1CAS | 23474124PubMed |

Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant–Microbe Interactions 14, 1140–1148.
A phosphate transporter gene from the extraradical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVeltLw%3D&md5=2f7d8dce3a719b50edada6a21d527b4aCAS | 11605953PubMed |

Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences 18, 13–20.
A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVCntb0%3D&md5=8b84aa4eaf546979f7af71ac3baf2842CAS | 8438231PubMed |

Martin RC, Hollenbeck VG, Dombrowski JE (2008) Evaluation of reference genes for quantitative RT-PCR in Lolium perenne. Crop Science 48, 1881–1887.
Evaluation of reference genes for quantitative RT-PCR in Lolium perenne.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Omt7vJ&md5=e5a423273a7813ce6f0050c9ec80c3e5CAS |

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonisation of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115, 495–501.
A new method which gives an objective measure of colonisation of roots by vesicular-arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar |

Muchhal US, Rhagothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93, 10 519–10 523.
Phosphate transporters from the higher plant Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslGrs7Y%3D&md5=fb54719259dd6d7a33e3f6776ebd9488CAS |

Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 99, 13 324–13 329.
Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFGgsLw%3D&md5=a6dee6d60b381a30c39a92beaf260829CAS |

Poulsen KH, Nagy R, Gao L-L, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytologist 168, 445–454.
Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Smu7fK&md5=a55dc6c7f6e9a040f2a0039ee5dfc4d0CAS | 16219083PubMed |

Rae AL, Cybinski HDH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology 53, 27–36.
Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVGgtLo%3D&md5=3299ab1be6e0e6508e036ee78fd9fdacCAS | 14756304PubMed |

Rasmussen S, Parsons AJ, Bassett S, Christensen MJ, Hume DE, Johnson LE, Johnson RD, Simpson WR, Stacke C, Voisey CR, Xue H, Newman JA (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytologist 173, 787–797.
High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFGgsbg%3D&md5=ab7ff3a3eca360e03e1f89440ddd1bdcCAS | 17286827PubMed |

Rasmussen S, Lane GA, Mace W, Parsons AJ, Fraser K, Xue H (2012) The use of genomics and metabolomics methods to quantify fungal endosymbionts and alkaloids in grasses. In ‘Plant metabolomics: methods and protocols. Methods in molecular biology. Vol. 860’. (Eds NW Hardy, RD Hall) pp. 213–226. (Springer Science + Business Media: New York)

Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216, 23–37.
Molecular mechanisms of phosphate transport in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1eht70%3D&md5=b1557115bde5b18e6837fd8f5b31a391CAS | 12430011PubMed |

Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–470.
A phosphate transporter expressed in arbuscule-containing cells in potato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFamtro%3D&md5=4efa6b74c3ddd1f51fc9873515b50c55CAS | 11719809PubMed |

Simon L, Lévesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Applied and Environmental Microbiology 59, 4211–4215.