Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Endosperm-specific OsPYL8 and OsPYL9 act as positive regulators of the ABA signaling pathway in rice seed germination

Ziqiang Chen A * , Lan Kong A * , Yun Zhou A , Zaijie Chen A , Dagang Tian A , Yan Lin A , Feng Wang A and Songbiao Chen A B
+ Author Affiliations
- Author Affiliations

A Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.

B Corresponding author. Emails: songbiao_chen@hotmail.com; sbchen@fjage.org

Functional Plant Biology 44(6) 635-645 https://doi.org/10.1071/FP16314
Submitted: 9 September 2016  Accepted: 9 March 2017   Published: 18 April 2017

Abstract

Pyrabactin resistance-like (PYL) proteins were identified as receptors of the plant hormone ABA. The PYL family consists of multiple members that are differently expressed in various tissues, exhibit distinct biochemical properties and have diverse biological functions. In the present study, we explored the expression patterns of the rice (Oryza sativa L.) OsPYL family genes and determined that OsPYL8 and OsPYL9 are specifically expressed in the endosperms. Sequence analysis and deletion experiments revealed that the OsPYL8 and OsPYL9 promoters contain multiple motifs involved in endosperm-specific expression. Transgenic rice plants overexpressing OsPYL8 or OsPYL9 showed hypersensitivity to ABA during seed germination, suggesting that both OsPYL8 and OsPYL9 act as positive regulators of the ABA signalling pathway in the seed. OsPYL8 and OsPYL9 interact with OsPP2C51 and OsPP2C68, whose expression is induced in the endosperms by ABA. Our results provided a foundation for future studies on OsPYL8- and OsPYL9-mediated ABA signalling in the rice endosperms.

Additional keywords: ABA receptors, endosperm-specific expression, Oryza sativa, pyrabactin resistance-like proteins.


References

Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio GA, Fernandez MA, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiology 161, 931–941.
PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFKqsLk%3D&md5=5074ce7a4ffd07c8f04f2905e4a495fdCAS |

Bai G, Yang DH, Zhao Y, Ha S, Yang F, Ma J, Gao XS, Wang ZM, Zhu JK (2013) Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Molecular Biology 83, 651–664.
Interactions between soybean ABA receptors and type 2C protein phosphatases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gjsr7I&md5=72743ec4429e2a36142b079012a16971CAS |

Chai YM, Jia HF, Li CL, Dong QH, Shen YY (2011) FaPYR1 is involved in strawberry fruit ripening. Journal of Experimental Botany 62, 5079–5089.
FaPYR1 is involved in strawberry fruit ripening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejs7%2FO&md5=c7d311ad59e7ae7b16e098a2d4ce2992CAS |

Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Molecular Plant Pathology 7, 417–427.
A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGru7jJ&md5=0530d1c6af6d8c9d55a8c2d5b7cee7cbCAS |

Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology 150, 1111–1121.
A versatile zero background T-vector system for gene cloning and functional genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFert7c%3D&md5=9fdfa530a0878bd3276244676343585eCAS |

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61, 651–679.
Abscisic acid: emergence of a core signaling network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSjsbk%3D&md5=8dcd826958e25d62f66729cb1b78c2c9CAS |

Fan W, Zhao M, Li S, Bai X, Li J, Meng H, Mu Z (2016) Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biology 16, 99
Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots.Crossref | GoogleScholarGoogle Scholar |

Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664.
In vitro reconstitution of an abscisic acid signalling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVentLnI&md5=277d14a9b2420e8eaca65a129353e9ebCAS |

Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernandez MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. The Plant Cell 24, 2483–2496.
Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wjs7fL&md5=89624a50cfc2168106813be8cd008061CAS |

Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodríguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. Journal of Experimental Botany 65, 4451–4464.
Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGjsrbK&md5=47d1f091022d1ed364dd24828d13433dCAS |

He Y, Hao Q, Li W, Yan C, Yan N, Yin P (2014) Identification and characterization of ABA receptors in Oryza sativa. PLoS One 9, e95246
Identification and characterization of ABA receptors in Oryza sativa.Crossref | GoogleScholarGoogle Scholar |

Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6, 271–282.
Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlGntLc%3D&md5=6627cf0c5d467cab6e4ad2273586b0d2CAS |

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research 27, 297–300.
Plant cis-acting regulatory DNA elements (PLACE) database: 1999.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVKgug%3D%3D&md5=d1a9a0b7c7f46cd8e6393f7e1c2bf07fCAS |

Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6, 3901–3907.

Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. Journal of Experimental Botany 63, 1013–1024.
A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1CgsQ%3D%3D&md5=00120029c28ad5e84c062ffbf7927d8fCAS |

Kim H, Lee K, Hwang H, Bhatnagar N, Kim DY, Yoon IS, Byun MO, Kim ST, Jung KH, Kim BG (2014) Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. Journal of Experimental Botany 65, 453–464.
Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ChsLg%3D&md5=ba4fac459a115b37e3672e19ff423f92CAS |

Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Current Opinion in Plant Biology 5, 33–36.
Seed dormancy and germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xitlejtw%3D%3D&md5=fc8c7cf7c7a79f4faf7663a33d82dce4CAS |

Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30, 325–327.
PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12rs7k%3D&md5=c0b99ccd87245671c5c5f634abe99235CAS |

Li G, Wang D, Yang R, Logan K, Chen H, Zhang S, Skaggs MI, Lloyd A, Burnett WJ, Laurie JD, Hunter BG, Dannenhoffer JM, Larkins BA, Drews GN, Wang X, Yadegari R (2014) Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America 111, 7582–7587.
Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsl2ntb0%3D&md5=2e476623d6c9cf656818acc6ed944056CAS |

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068.
Regulators of PP2C phosphatase activity function as abscisic acid sensors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKlsLY%3D&md5=1dad7906d6cdf94bc6ef5da55f328cdfCAS |

Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009) A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602–608.
A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWjtL7N&md5=8c57a61adc884883afc932b93ffc5b4dCAS |

Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. The Plant Journal 16, 53–62.
An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOnsLY%3D&md5=6edf92988169a9e811177bb6b1b3139bCAS |

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473–497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x ( )
Crossref | GoogleScholarGoogle Scholar |

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071.
Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKlsLc%3D&md5=1f4b8c72a68325e38407c5a5803e194eCAS |

Pizzio GA, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez PL (2013) The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiology 163, 441–455.
The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVygsbbN&md5=6dfea1f30aecf4219e9d680336026384CAS |

Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends in Plant Science 15, 395–401.
ABA perception and signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWmsbc%3D&md5=654782e250e40d0d49190a9f1b9d55d7CAS |

Romero P, Lafuente MT, Rodrigo MJ (2012) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. Journal of Experimental Botany 63, 4931–4945.
The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjsLfK&md5=e316441113b6e6b11bd60e9ce4484edbCAS |

Saavedra X, Modrego A, Rodríguez D, González-García MP, Sanz L, Nicolás G, Lorenzo O (2010) The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiology 152, 133–150.
The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsF2murk%3D&md5=ba20818d9a7000e31b18dcb27ad9c647CAS |

Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668.
The abscisic acid receptor PYR1 in complex with abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOrurbL&md5=03628abd156068dd7ccca4b6db39c3d2CAS |

Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR, Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal 60, 575–588.
Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqt77L&md5=ebcc1c19ad4208d7ad82559e0a74e41fCAS |

Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9, 34–45.
Two faces of one seed: hormonal regulation of dormancy and germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFKltr0%3D&md5=5e44cbf0c0e62348333017d8472303ecCAS |

Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. The Plant Cell 2, 1171–1180.
Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsl2nt78%3D&md5=86853d19a40ba44eae76044a261ff905CAS |

Tian X, Wang Z, Li X, Lv T, Liu H, Wang L, Niu H, Bu Q (2015) Characterization and functional analysis of Pyrabactin Resistance-Like abscisic acid receptor family in rice. Rice (New York, N.Y.) 8, 28
Characterization and functional analysis of Pyrabactin Resistance-Like abscisic acid receptor family in rice.Crossref | GoogleScholarGoogle Scholar |

Wang Y, Wu Y, Duan C, Chen P, Li Q, Dai S, Sun L, Ji K, Sun Y, Xu W, Wang C, Luo H, Wang Y, Leng P (2012) The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber. Journal of Plant Physiology 169, 1874–1882.
The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSktL3M&md5=6e38061d7fd7f687a7cde5b203730b92CAS |

Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Molecular Biology 40, 1–12.
Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksF2iu7c%3D&md5=c9c880abb2ea67617fce9d4403600341CAS |

Wu CY, Suzuki A, Washida H, Takaiwa F (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. The Plant Journal 14, 673–683.
The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1WktL0%3D&md5=1802a8d3b21c97df741d29540c8c7a44CAS |

Wu CY, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. The Plant Journal 23, 415–421.
Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSlur0%3D&md5=e2ca6d6ffc2a3f305188c51d24f23bfbCAS |

Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9, 550
Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis.Crossref | GoogleScholarGoogle Scholar |

Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural & Molecular Biology 16, 1230–1236.
Structural insights into the mechanism of abscisic acid signaling by PYL proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKmsLzE&md5=79e8b8b259d3f23bdf56889dfbe7ca93CAS |

Yoshihara T, Washida H, Takaiwa F (1996) A 45-bp proximal region containing AACA and GCN4 motif is sufficient to confer endosperm-specific expression of the rice storage protein glutelin gene, GluA-3. FEBS Letters 383, 213–218.
A 45-bp proximal region containing AACA and GCN4 motif is sufficient to confer endosperm-specific expression of the rice storage protein glutelin gene, GluA-3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFCitr8%3D&md5=3dde10566d75fca92955dba02e112fbeCAS |

Zhang F, Lu X, Lv Z, Zhang L, Zhu M, Jiang W, Wang G, Sun X, Tang K (2013) Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L. PLoS One 8, e56697
Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsF2itrc%3D&md5=34582035abb4edacf42546d7049055b8CAS |

Zhao Y, Chan Z, Xing L, Liu X, Hou YJ, Chinnusamy V, Wang P, Duan C, Zhu JK (2013) The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Research 23, 1380–1395.
The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqurfL&md5=61776c85f9b2b0f0a28a1f84fbe37eb3CAS |

Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P, Duan CG, Zhu X, Zhu JK (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling 7, ra53
The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.Crossref | GoogleScholarGoogle Scholar |

Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America 113, 1949–1954.
ABA receptor PYL9 promotes drought resistance and leaf senescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslWgsbw%3D&md5=7921fcf738e4ddf94aaec66908db4848CAS |

Zhou S, Yin L, Xue H (2013) Functional genomics based understanding of rice endosperm development. Current Opinion in Plant Biology 16, 236–246.
Functional genomics based understanding of rice endosperm development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXls1ertro%3D&md5=bfa274eab147b54f24ec8b188c704d7fCAS |

Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247–273.
Salt and drought stress signal transduction in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWhtbc%3D&md5=649559179f58e74e84a0128b605d9f85CAS |