Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

The effect of simulated microgravity on the Brassica napus seedling proteome

Andrej Frolov A , Anna Didio A B , Christian Ihling C , Veronika Chantzeva D , Tatyana Grishina B , Wolfgang Hoehenwarter E , Andrea Sinz C , Galina Smolikova D , Tatiana Bilova A D F and Sergei Medvedev D F
+ Author Affiliations
- Author Affiliations

A Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, DE 06120, Halle/Saale, Germany.

B Department of Biochemistry, St. Petersburg State University, RU 199034, St. Petersburg, Russian Federation.

C Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther Universität Halle-Wittenberg, DE 06120, Halle/Saale, Germany.

D Department of Plant Physiology and Biochemistry, St. Petersburg State University, RU 199034, St. Petersburg, Russian Federation.

E Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, DE 06120, Halle/Saale, Germany.

F Corresponding authors. Emails: bilova.tatiana@gmail.com; s.medvedev@spbu.ru

Functional Plant Biology - https://doi.org/10.1071/FP16378
Submitted: 31 October 2016  Accepted: 5 October 2017   Published online: 7 December 2017

Abstract

The magnitude and the direction of the gravitational field represent an important environmental factor affecting plant development. In this context, the absence or frequent alterations of the gravity field (i.e. microgravity conditions) might compromise extraterrestrial agriculture and hence space inhabitation by humans. To overcome the deleterious effects of microgravity, a complete understanding of the underlying changes on the macromolecular level is necessary. However, although microgravity-related changes in gene expression are well characterised on the transcriptome level, proteomic data are limited. Moreover, information about the microgravity-induced changes in the seedling proteome during seed germination and the first steps of seedling development is completely missing. One of the valuable tools to assess gravity-related issues is 3D clinorotation (i.e. rotation in two axes). Therefore, here we address the effects of microgravity, simulated by a two-axial clinostat, on the proteome of 24- and 48-h-old seedlings of oilseed rape (Brassica napus L.). The liquid chromatography-MS-based proteomic analysis and database search revealed 95 up- and 38 downregulated proteins in the tryptic digests obtained from the seedlings subjected to simulated microgravity, with 42 and 52 annotations detected as being unique for 24- and 48-h treatment times, respectively. The polypeptides involved in protein metabolism, transport and signalling were annotated as the functional groups most strongly affected by 3-D clinorotation.

Additional keywords: 3D clinorotation, LC-MS, proteomics, seedling development, seed germination.


References

Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. International Journal of Plant Genomics 2012, 494572
Gel-based and gel-free quantitative proteomics approaches at a glance.CrossRef |

Albrecht-Buehler G (1992) The simulation of microgravity conditions on the ground. ASGSB Bulletin 5, 3–10.

Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Current Science 82, 1227–1238.

Barjaktarović Z, Nordheim A, Lamkemeyer T, Fladerer C, Madlung J, Hampp R (2007) Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures. Journal of Experimental Botany 58, 4357–4363.
Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures.CrossRef |

Barjaktarović Z, Babbick M, Nordheim A, Lamkemeyer T, Magel E, Hampp R (2009) Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- and simulated micro-gravity. Microgravity Science and Technology 21, 191–196.
Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- and simulated micro-gravity.CrossRef |

Bilova T, Lukasheva E, Brauch D, Greifenhagen U, Paudel G, Tarakhovskaya E, Frolova N, Mittasch J, Balcke GU, Tissier A, Osmolovskaya N, Vogt T, Wessjohann LA, Birkemeyer C, Milkowski C, Frolov A (2016) A snapshot of the plant glycated proteome: structural, functional, and mechanistic aspects. The Journal of Biological Chemistry 291, 7621–7636.
A snapshot of the plant glycated proteome: structural, functional, and mechanistic aspects.CrossRef | 1:CAS:528:DC%2BC28Xltlanurw%3D&md5=4d7bb070f4ec07c97281e415baf8aaaaCAS |

Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiology 133, 1677–1690.
Plant gravitropism. Unraveling the ups and downs of a complex process.CrossRef | 1:CAS:528:DC%2BD2cXhvFCj&md5=b6048cdb58ff2c48452661f9a9432895CAS |

Borst AG, van Loon JJWA (2009) Technology and development for the random positioning machine, RPM. Microgravity Science and Technology 21, 287–292.
Technology and development for the random positioning machine, RPM.CrossRef |

Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA (2008) Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 861, 29–39.
Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase.CrossRef | 1:CAS:528:DC%2BD2sXhsVOks73M&md5=96fd2a5c8c2f9fe04e5995b30fc630e2CAS |

Centis-Aubay S, Gasset G, Mazars C, Ranjeva R, Graziana A (2003) Changes in gravitational forces induce modifications of gene expression in A. thaliana seedlings. Planta 218, 179–185.
Changes in gravitational forces induce modifications of gene expression in A. thaliana seedlings.CrossRef | 1:CAS:528:DC%2BD3sXptleltbc%3D&md5=46958de1106e8f9ecce16835a3cf50a6CAS |

Chrost B, Kolukisaoglu U, Schulz B, Krupinska K (2007) An α-galactosidase with an essential function during leaf development. Planta 225, 311–320.
An α-galactosidase with an essential function during leaf development.CrossRef | 1:CAS:528:DC%2BD28XhtlWntLbL&md5=3057a622f0ee105f3a3505bde55c3d05CAS |

Correll MJ, Pyle TP, Millar KD, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238, 519–533.
Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes.CrossRef | 1:CAS:528:DC%2BC3sXhtleku7%2FN&md5=3c786d37a44239ad9e973653d5f6dc43CAS |

Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 26, 1367–1372.
MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.CrossRef | 1:CAS:528:DC%2BD1cXhsVWjtLzJ&md5=5c6147f706f19902bed32d16b21f7af7CAS |

De Micco V, Aronne G, De Pascale S (2006) Effect of simulated microgravity on seedling development and vascular differentiation of soy. Acta Astronautica 58, 139–148.
Effect of simulated microgravity on seedling development and vascular differentiation of soy.CrossRef | 1:CAS:528:DC%2BD2MXht1Cqtb%2FL&md5=838fbfa79a3fabcefe506960bf9daac8CAS |

De Micco V, De PS, Paradiso R, Aronne G (2014) Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. Plant Biology (Stuttgart, Germany) 16, 31–38.
Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle.CrossRef |

Don R (2003) ‘ISTA Handbook on seedling evaluation.’ (The International Seed Testing Association: Bassersdorf, Switzerland)

Feger BJ, Thompson JW, Dubois LG, Kommaddi RP, Foster MW, Mishra R, Shenoy SK, Shibata Y, Kidane YH, Moseley MA, Carnell LS, Bowles DE (2016) Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Scientific Reports 6, 34091
Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection.CrossRef | 1:CAS:528:DC%2BC28XhsF2qsLzI&md5=4617e6e867577ab74ba8a7f58cf51240CAS |

Ferl RJ, Koh J, Denison F, Paul AL (2015) Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology 15, 32–56.
Spaceflight induces specific alterations in the proteomes of Arabidopsis.CrossRef | 1:CAS:528:DC%2BC2MXhtVSiurw%3D&md5=fbf62f70df0ecfb173245588660a1226CAS |

Francoz E, Ranocha P, Nguyen-Kim H, Jamet E, Burlat V, Dunand C (2015) Roles of cell wall peroxidases in plant development. Phytochemistry 112, 15–21.
Roles of cell wall peroxidases in plant development.CrossRef | 1:CAS:528:DC%2BC2cXhtleisrvE&md5=321fd010fbe9b7b041349048743603fcCAS |

Frolov A, Bluher M, Hoffmann R (2014) Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus. Analytical and Bioanalytical Chemistry 406, 5755–5763.
Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus.CrossRef | 1:CAS:528:DC%2BC2cXht1Kqu73F&md5=b8a7c88ca984d1ba0d1cd50440114b57CAS |

Frolov A, Bilova T, Paudel G, Berger R, Balcke GU, Birkemeyer C, Wessjohann LA (2017) Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. Journal of Plant Physiology 208, 70–83.
Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model.CrossRef | 1:CAS:528:DC%2BC28XhvVegsrrL&md5=02c8a99bf9bd80b2c008ebff948bf73dCAS |

Gladilovich V, Greifenhagen U, Sukhodolov N, Selyutin A, Singer D, Thieme D, Majovsky P, Shirkin A, Hoehenwarter W, Bonitenko E, Podolskaya E, Frolov A (2016) Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics. Journal of Chromatography. A 1443, 181–190.
Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.CrossRef | 1:CAS:528:DC%2BC28Xks1Oqu7Y%3D&md5=ae3fba66c9529f5426d8b1007b8d9b7bCAS |

Greifenhagen U, Nguyen VD, Moschner J, Giannis A, Frolov A, Hoffmann R (2015) Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma. Journal of Proteome Research 14, 768–777.
Sensitive and site-specific identification of carboxymethylated and carboxyethylated peptides in tryptic digests of proteins and human plasma.CrossRef | 1:CAS:528:DC%2BC2cXhvFOjsLrF&md5=e1a2f8bc6e39bb14dd61d96ef4f4c5f9CAS |

Greifenhagen U, Frolov A, Bluher M, Hoffmann R (2016) Plasma proteins modified by advanced glycation end products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes. The Journal of Biological Chemistry 291, 9610–9616.
Plasma proteins modified by advanced glycation end products (AGEs) reveal site-specific susceptibilities to glycemic control in patients with type 2 diabetes.CrossRef | 1:CAS:528:DC%2BC28XmvFClsb8%3D&md5=4220b32519dae0b28319921968bfe9bcCAS |

Grimm D, Pietsch J, Wehland M, Richter P, Strauch SM, Lebert M, Magnusson NE, Wise P, Bauer J (2014) The impact of microgravity-based proteomics research. Expert Review of Proteomics 11, 465–476.
The impact of microgravity-based proteomics research.CrossRef | 1:CAS:528:DC%2BC2cXhtFCrt7fN&md5=c69f6d0f6476a456f4df5eed4aaa2bb6CAS |

Gu JW, Chao HB, Gan L, Guo LX, Zhang K, Li YH, Wang H, Raboanatahiry N, Li MT (2016) Proteomic dissection of seed germination and seedling establishment in Brassica napus. Frontiers in Plant Science 7, 1482
Proteomic dissection of seed germination and seedling establishment in Brassica napus.CrossRef |

Herranz R, Anken R, Boonstra J, Braun M, Christianen PC, de Geest M, Hauslage J, Hilbig R, Hill RJ, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJ, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17.
Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology.CrossRef |

Hikosaka Y, Kanechi M, Sato M, Uno Y (2015) Dry-fog aeroponics affects the root growth of leaf lettuce (Latuca sativa L. cv Greenspan) by changing the flow rate of spray fertigation. Environment Control in Biology 53, 181–187.
Dry-fog aeroponics affects the root growth of leaf lettuce (Latuca sativa L. cv Greenspan) by changing the flow rate of spray fertigation.CrossRef | 1:CAS:528:DC%2BC28Xps1egtLw%3D&md5=17008282ed5bac64e306f54b2ae1a279CAS |

Hilaire E, Peterson BV, Guikema JA, Brown CS (1996) Clinorotation affects morphology and ethylene production in soybean seedlings. Plant & Cell Physiology 37, 929–934.
Clinorotation affects morphology and ethylene production in soybean seedlings.CrossRef | 1:CAS:528:DyaK28Xms1agt7s%3D&md5=7e55f377315fa0f83dd6f78038e84ec1CAS |

Hoson T (2014) Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life (Basel, Switzerland) 4, 205–216.
Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space.CrossRef |

Hoson T, Kamisaka S, Masuda Y, Masamichi Y (1992) Changes in plant growth process under microgravity conditions simulated by three-dimensional clinostat. Botanical Magazine Tokyo 105, 53–70.
Changes in plant growth process under microgravity conditions simulated by three-dimensional clinostat.CrossRef |

Hu S, Li YJ, Wang WZ, Jiao JY, Kou M, Yin QL, Xu HY (2017) The antioxidation-related functional structure of plant comunities: understanding antioxidation at the plant community level. Ecological Indicators 78, 98–107.
The antioxidation-related functional structure of plant comunities: understanding antioxidation at the plant community level.CrossRef | 1:CAS:528:DC%2BC2sXksV2hsbg%3D&md5=43c73c6d3aba86f811fa7dfb9812320dCAS |

Hundertmark M, Hincha DK (2008) LEA (Late Enbryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9, 118
LEA (Late Enbryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana.CrossRef |

Iglesias N, Abelenda JA, Rodiño M, Sampedro J, Revilla G, Zarra I (2006) Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant & Cell Physiology 47, 55–63.
Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana.CrossRef | 1:CAS:528:DC%2BD28Xht12ksLk%3D&md5=a68327929a9e1c6e5d9fa517babbd936CAS |

Inglis PW, Ciampi AY, Salomao AN, Costa TS, Azevedo VC (2014) Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity. Genetics and Molecular Biology 37, 81–92.
Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity.CrossRef | 1:CAS:528:DC%2BC2cXhtVagsr7M&md5=09ac1317c88c096879b675502a12aaeeCAS |

Isaacson T, Damasceno CM, Saravanan RS, He Y, Catala C, Saladie M, Rose JK (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols 1, 769–774.
Sample extraction techniques for enhanced proteomic analysis of plant tissues.CrossRef | 1:CAS:528:DC%2BD28XhtFOitLbE&md5=2a7568fb9f996f15571a03928c97a9ebCAS |

Jagtap SS, Awhad RB, Santosh B, Vidyasagar PB (2011) Effects of clinorotation on growth and chlorophyl content of rice seeds. Microgravity Science and Technology 23, 41–48.
Effects of clinorotation on growth and chlorophyl content of rice seeds.CrossRef | 1:CAS:528:DC%2BC3MXpvFSruw%3D%3D&md5=2cd20193d7fbb904b3e47045ce0c3b60CAS |

Jules K, McPherson K, Hrovat K, Kelly E, Reckart T (2004) A status report on the characterization of the microgravity environment of the International Space Station. Acta Astronautica 55, 335–364.
A status report on the characterization of the microgravity environment of the International Space Station.CrossRef |

Kamada M, Takaoki M, Ishioka N (2004) Gravity-regulated proteins of Arabidopsis and cucumber seedlings detected by 2-D electrophoresis. Uchu Seibutsu Kagaku 18, 156–157.

Kordyum EL (1997) Biology of plant cells in microgravity and under clinostating. International Review of Cytology 171, 1–78.
Biology of plant cells in microgravity and under clinostating.CrossRef | 1:STN:280:DyaK2s3hvVOjsw%3D%3D&md5=49ccff12d026563bd9da4c62b9cb7446CAS |

Lenne C, Block MA, Carin J, Douce R (1995) Sequence and expression of the messenger-RNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. The Biochemical Journal 311, 805–813.
Sequence and expression of the messenger-RNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves.CrossRef | 1:CAS:528:DyaK2MXptFahu78%3D&md5=4640c7e52c027c9e93b99011b12d6edbCAS |

Matía I, van Loon JWA, Carnero-Díaz E, Marco R, Medina FJ (2009) Seed germination and seedling growth under simulated microgravity causes alterations in plant cell proliferation and ribosome biogenesis. Microgravity Science and Technology 21, 169–174.
Seed germination and seedling growth under simulated microgravity causes alterations in plant cell proliferation and ribosome biogenesis.CrossRef |

Matía I, González-Camacho F, Herranz R, Kiss JZ, Gasset G, van Loon JJ, Marco R, Javier Medina F (2010) Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of Plant Physiology 167, 184–193.
Plant cell proliferation and growth are altered by microgravity conditions in spaceflight.CrossRef |

Mazars C, Briere C, Grat S, Pichereaux C, Rossignol M, Pereda-Loth V, Eche B, Boucheron-Dubuisson E, Le DI, Medina FJ, Graziana A, Carnero-Diaz E (2014) Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the International Space Station. PLoS One 9, e91814
Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the International Space Station.CrossRef |

Medina FJ, Herranz R (2010) Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signaling & Behavior 5, 176–179.
Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin.CrossRef | 1:CAS:528:DC%2BC3cXptF2mtLo%3D&md5=f6f383e09c8c9cadc62df595f15ab727CAS |

Medvedev SS (2012) Mechanisms and physiological role of polarity in plants. Russian Journal of Plant Physiology 59, 502–514.
Mechanisms and physiological role of polarity in plants.CrossRef | 1:CAS:528:DC%2BC38Xos1Cru70%3D&md5=d37db35ebeec66a200d51f20a562ae21CAS |

Miyamoto K, Hoshino T, Yamashita M, Ueda J (2005) Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport. Physiologia Plantarum 123, 467–474.
Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport.CrossRef | 1:CAS:528:DC%2BD2MXjsFekt7k%3D&md5=b3d984befb6820baa9a72237d213fae6CAS |

Musgrave ME (2002) Seeds in space. Seed Science Research 12, 1–17.
Seeds in space.CrossRef |

Paudel G, Bilova T, Schmidt R, Greifenhagen U, Berger R, Tarakhovskaya E, Stöckhardt S, Balcke GU, Humbek K, Brandt W, Sinz A, Vogt T, Birkemeyer C, Wessjohann L, Frolov A (2016) Changes in Arabidopsis thaliana advanced glycated proteome induced by the polyethylene glycol-related osmotic stress. Journal of Experimental Botany 67, 6283–6295.
Changes in Arabidopsis thaliana advanced glycated proteome induced by the polyethylene glycol-related osmotic stress.CrossRef | 1:CAS:528:DC%2BC2sXhvFCrs7Y%3D&md5=46e3665f9976e4b29e7da1e03ce58606CAS |

Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12, 40–56.
Spaceflight transcriptomes: unique responses to a novel environment.CrossRef | 1:CAS:528:DC%2BC38XhtV2ksbk%3D&md5=bf9fdd9cdba70da7cd3ae22eac9a11e9CAS |

Paul AL, Wheeler RM, Levine HG, Ferl RJ (2013a) Fundamental plant biology enabled by the Space Shuttle. American Journal of Botany 100, 226–234.
Fundamental plant biology enabled by the Space Shuttle.CrossRef |

Paul AL, Zupanska AK, Schultz ER, Ferl RJ (2013b) Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biology 13, 112
Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight.CrossRef |

Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends in Plant Science 12, 267–277.
New insights into pectin methylesterase structure and function.CrossRef | 1:CAS:528:DC%2BD2sXmtlWgs7k%3D&md5=1c43a7bb934969504541dc86116612afCAS |

Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiology 145, 216–229.
Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds.CrossRef | 1:CAS:528:DC%2BD2sXhtVKqtr%2FM&md5=110021c13e0f03a30ef41cfa5569001aCAS |

Smith CM, Desai M, Land ES, Perera IY (2013) A role for lipid-mediated signaling in plant gravitropism. American Journal of Botany 100, 153–160.
A role for lipid-mediated signaling in plant gravitropism.CrossRef | 1:CAS:528:DC%2BC3sXhvVKlurc%3D&md5=18e0de0ca3c5e33d3357241c8837ec88CAS |

Soboleva A, Modzei M, Didio A, Plociennik H, Kijewska H, Grishina T, Karonova T, Bilova T, Stefanov V, Stefanovicz P, Frolov A (2017) Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides. Analytical Methods 9, 409–418.
Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides.CrossRef | 1:CAS:528:DC%2BC28XhvFSlsb7J&md5=5d7d5d4d4e38a1627c3206e56ecdd9b8CAS |

Spiller S, Frolov A, Hoffmann R (2017) Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers. Protein and Peptide Letters.
Quantification of specific glycation sites in human serum albumin as prospective type 2 diabetes mellitus biomarkers.CrossRef |

Tan C, Wang H, Zhang Y, Qi B, Xu G, Zheng H (2011) A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Science 9, 72
A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type.CrossRef | 1:CAS:528:DC%2BC38Xis1aitw%3D%3D&md5=0b0a758f8d8aab50e620cdcc8849b4b6CAS |

Wang H, Zheng HQ, Sha W, Zeng R, Xia QC (2006) A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation. Journal of Experimental Botany 57, 827–835.
A proteomic approach to analysing responses of Arabidopsis thaliana callus cells to clinostat rotation.CrossRef | 1:CAS:528:DC%2BD28XitVOqtr8%3D&md5=223287c707e371de95ddbdc50eee0a24CAS |

Wang H, Xugang L, Krause L, Görög M, Schüler O, Hauslage J, Hemmersbach R, Kircher S, Lasok H, Haser T, Rapp K, Schmidt J, Xin Y, Pasternak T, Aubry-Hiket D, Tietz O, Dovzhenko A, Palme K, Ditengon FA (2016) 2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Science and Technology 28, 59–66.
2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings.CrossRef | 1:CAS:528:DC%2BC2MXitVSgs7rJ&md5=5f5ff3cf6eba345d976a924d2d7ceb4dCAS |

Wei N, Tan C, Qi B, Zhang Y, Xu G, Zheng H (2010) Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. Journal of Experimental Botany 61, 3875–3884.
Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning.CrossRef | 1:CAS:528:DC%2BC3cXhtFGhtrjP&md5=02a24eaaa1229c413497d3b82fabaa08CAS |

Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Molecular Plant 2, 851–860.
Homogalacturonan methyl-esterification and plant development.CrossRef | 1:CAS:528:DC%2BD1MXhtFyhtb3M&md5=59f0971c2318e39683325872533298b5CAS |

Xu D, Guo S, Lin M (2014) Effects of long-term simulated microgravity on tomato seedlings. Canadian Journal of Plant Science 94, 273–280.
Effects of long-term simulated microgravity on tomato seedlings.CrossRef |

Zheng HQ, Han F, Le J (2015) Higher plants in space: microgravity, perception, response, and adaption. Microgravity Science and Technology 27, 377–386.
Higher plants in space: microgravity, perception, response, and adaption.CrossRef | 1:CAS:528:DC%2BC2MXotlKjurw%3D&md5=e668789a53ec2306e2c1619023526496CAS |

Zhou CP, Bai T, Wang Y, Wu T, Zhang XZ, Xu XF, Han ZH (2017) Morphological and enzymatic responses to waterlogging in three Prunus species. Scientia Horticulturae 221, 62–67.
Morphological and enzymatic responses to waterlogging in three Prunus species.CrossRef | 1:CAS:528:DC%2BC2sXmsl2ltbs%3D&md5=8be3450a9a7ca8eb8364d4a1767eb482CAS |

Zupanska AK, Denison FC, Ferl RJ, Paul AL (2013) Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. American Journal of Botany 100, 235–248.
Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.CrossRef | 1:CAS:528:DC%2BC3sXhvVKksr0%3D&md5=89ab057bdfdb27a17133082c03c2b96fCAS |



Supplementary MaterialSupplementary Material (314 KB) Export Citation