Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Are crassulacean acid metabolism and C4 photosynthesis incompatible?


Functional Plant Biology 29(6) 775 - 785
Published: 28 June 2002

Abstract

This paper originates from a presentation at the IIIrd International Congress on Crassulacean Acid Metabolism, Cape Tribulation, Queensland, Australia, August 2001.

Despite sharing a similar metabolism, crassulacean acid metabolism (CAM) and C4 photosynthesis are not known to occur in identical species, with the exception of Portulaca spp. In Portulaca, C4 and weak CAM photosynthesis occur in distinct regions of the leaf, rather than in the same cells. This is in marked contrast to the situation in most CAM species where C3 and CAM photosynthesis are active in the same cell over the course of a day and growing season. The lack of CAM and C4 photosynthesis in identical cells of a plant indicates these photosynthetic pathways are incompatible. Incompatibilities between CAM and C4 photosynthesis could have a number of biochemical, anatomical and evolutionary explanations. Biochemical incompatibilities could result from the requirement for spatial separation of C3 and C4 phases in C4 plants versus temporal separation in CAM plants. In C4 plants, regulatory systems coordinate mesophyll and bundle sheath metabolism, with light intensity being the major environmental signal. In CAM plants, a circadian oscillator coordinates day and night phases of CAM. The requirement for rapid intercellular transport in C4 plants may be incompatible with the intracellular transport and storage needs of CAM. For example, the large vacuole required for malate storage in CAM could impede metabolite diffusion between mesophyll and bundle sheath cells in C4 plants. Anatomical barriers could also exist because both CAM and the C4 pathway require distinct leaf anatomies for efficient function. Efficient function of the C4 pathway generally requires an outer layer of cells specialized for phosphoenolpyruvate (PEP) carboxylation and regeneration and an inner layer for CO2 accumulation and refixation, while CAM species require enlarged vacuoles and tight cell packing. In evolutionary terms, barriers preventing CAM and C4 photosynthesis in the same species may be the initial steps in the respective evolutionary pathways from C3 ancestors. The first steps in C4 photosynthesis are related to scavenging photorespiratory CO2 via localization of glycine decarboxylase in the bundle sheath cells. The initial steps in CAM evolution are associated with the scavenging of respiratory CO2 at night by PEP carboxylation. In each, simplified versions of the specialized anatomy may need to be present for the evolutionary sequence to begin. For C4 evolution, enhanced bundle sheath size may be required in C3 ancestors; for CAM evolution, succulence may be required. Thus, before CAM or C4 photosynthesis began to evolve, the outcome of the evolutionary experiment may have been predetermined.

Keywords: CAM photosynthesis, C4 photosynthesis, evolution, photosynthesis, regulation.

https://doi.org/10.1071/PP01217

© CSIRO 2002

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (54) Get Permission

View Dimensions

View Altmetrics