Supplementary Material

Differences in hydraulic traits of grapevine rootstocks are not conferred to a common *Vitis vinifera* scion

Felipe H. Barrios-MasiasA, Thorsten KnipferB, M. Andrew WalkerB and Andrew J. McElroneB,C,D

ADepartment of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, NV 89557, USA.

BDepartment of Viticulture and Enology, University of California, Davis, CA 95616, USA.

CUnited States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA.

DCorresponding author. Email: ajmeelrone@ucdavis.edu
Fig. S1. Pot water content (A), stem water potential (Ψ_{stem}; B), and the relationship of pot water content and Ψ_{stem} (C) of Cabernet Sauvignon grafted on *V. champinii* (Ram\CS; black squares) and *V. riparia* (Rip\CS; white circles) during an eight-day dry down period. For each rootstock\scion combination, days with different means are shown by different letters (Ram\CS = a to e; Rip\CS = x to z).
Fig. S2. Stomatal conductance (g_s), photosynthetic rate (P_n) and intrinsic water use efficiency (WUE_i) of Cabernet Sauvignon grafted on $V.\ champinii$ (Ram’CS; black squares) and $V.\ riparia$ (Rip’CS; white circles) during an eight-day dry down period. For each rootstock’scion combination, days with different means are shown by different letters (Ram’CS = a to c; Rip’CS = x to z).