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Abstract. Diatoms dominate nearly half of current oceanic productivity, so their responses to ocean acidification are of
general concern regarding future oceanic carbon sequestration. Community, mesocosm and laboratory studies show a range
of diatom growth and photophysiological responses to increasing pCO,. Nearly 20 studies on effects of elevated pCO, on
diatoms have shown stimulations, no effects or inhibitions of growth rates. These differential responses could result from
differences in experimental setups, cell densities, levels of light and temperature, but also from taxon-specific physiology.
Generally, ocean acidification treatments of lowered pH with elevated CO, stimulate diatom growth under low to moderate
levels of light, but lead to growth inhibition when combined with excess light. Additionally, diatom cell sizes and their co-
varying metabolic rates can influence responses to increasing pCO, and decreasing pH, although cell size effects are
confounded with taxonomic specificities in cell structures and metabolism. Here we summarise known diatom growth and
photophysiological responses to increasing pCO, and decreasing pH, and discuss some reasons for the diverse responses

observed across studies.
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Introduction

Increasing atmospheric CO, due to anthropogenic activities
affects terrestrial photosynthesis, but is also causing pCO, to
rise and pH to drop in the surface oceans, which influence marine
primary producers (Beardall ez al. 2009; Riebesell and Tortell
2011; Gao et al. 2012a), in a yet more complicated way due to
the concurrent changes in seawater chemistry and ocean mixing.

Diatoms are suggested to have evolved between 100 and
200 million years ago (Sims ef al. 2006), when atmospheric
CO, is thought to have been ~2000ppmv (Veron 2008),
compared with current levels of ~400 ppmv and projected end-
century levels of 750-1000 ppmv. The extant diatoms now
contribute ~20% of the organic carbon generated globally
each year by photosynthesis (Field et al. 1998). They exist
both as phytoplankton and as benthic algae. At least some
diatom species operate metabolic pathways unusual among
studied phytoplankton, including a urea cycle (Allen et al.
2011) and a C4 carboxylation path (Reinfelder et al. 2004;
Haimovich-Dayan et al. 2013). Diatoms run highly efficient
CO, concentrating mechanisms (CCMs) to achieve a high
ratio of carboxylation to oxygenation (Raven er al. 2011;
Reinfelder 2011). They tolerate high levels of UV radiation
(Guan and Gao 2008; Wu et al. 2012a), enjoy a low
susceptibility to photoinactivation of PSII compared with other
phytoplankters (Six et al. 2007, 2009; Key et al. 2010; Wu et al.
2011) and successfully exploit variable light (Lavaud et al. 2004,
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2007). They are, as a net result, by far the most successful group
of eukaryotic aquatic primary producers, not only in terms of
primary production but also in their number of species and
their capacities to acclimate to environmental changes with
diversified metabolisms. Diatom growth rates correlate closely
with their size, decreasing almost linearly with the log of
increasing cell volume, which ranges across eight orders of
magnitude, with cell diameters ranging from ~2 um to a few
mm (Finkel ef al. 2010). Diatoms have responded to past climate
change through successions of differently sized cells, with a trend
towards smaller cells under higher temperatures over the past
65 million years (Falkowski and Oliver 2007; Finkel et al. 2007).

The ongoing ocean acidification triggered by increasing
atmospheric CO, concentration alters seawater carbonate
chemistry, the availabilities and toxicities of nutrients (Millero
etal.2009). Ocean warming will in concert tend to drive increased
stratification, decreasing the thickness of the upper mixing
layer and lowering transport of nutrients from interior or
deeper layers to the surface ocean (Doney 2006; Steinacher
et al. 2010). These changes will differentially affect differently
sized diatom species (Flynn et al. 2012), and thereby alter sinking
rates and organic carbon export (Finkel et al. 2010). Therefore,
growth and physiological responses of diatoms to elevated
CO, concentrations have gained attention (Riebesell ef al.
1993; Burkhardt and Riebesell 1997; Burkhardt ef al. 1999).
Stimulative, neutral and inhibitory effects of elevated CO,
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concentrations on diatom growth have been reported in different
species or even in the same species (Riebesell et al. 1993;
Burkhardt ef al. 1999; Chen and Gao 2003; Kim et al. 2006;
Wu et al. 2010; Yang and Gao 2012; Li and Campbell 2013)
(Table 1). In this review, we focus on the effects of elevated CO,
and lower pH on diatom photophysiology, by summarising
studies of their growth and photophysiological responses to
elevated CO, under different experimental conditions, and
discuss some potential mechanisms to resolve the diversity of
responses observed across studies to date.

Ocean acidification

The oceans are presently absorbing ~25 million tons of CO, from
the atmosphere each day, an important role in counteracting
global warming (Sabine et al. 2004). This dissolution of CO,
from the air is, however, acidifying the oceans (Doney 2006;
Gattuso and Hansson 2011).
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The exchange of CO, between the sea and atmosphere
depends on temperature, salinity, physical mixing of seawater,
respiration and photosynthesis. Therefore, CO, fluxes change
horizontally due to physical, chemical and biological properties
of waters. When CO, dissolves in seawater, it combines
with water to form carbonic acid (CO,+H,0 — H,COs)
which dissociates to bicarbonate (H,CO; — H"+HCO5),
discharging protons (H") and so ultimately attaining a state of
new equilibrium. However, as the H' concentration increases
with CO, dissolution, the H" releases can partially reverse the
secondary dissociation reaction, leading to a decrease in
carbonate ions (H" + CO5>~ — HCO5 ). Typical changes linked
with ocean acidification are therefore increased concentrations
of pCO,, H" and HCO;", decreases in the concentration of
CO5% and decreases in the CaCOj; saturation state (Gattuso
et al. 2010). Since the beginning of the industrial revolution,
the pH of oceanic surface seawater has already dropped by ~0.1
unit due to atmospheric CO, rise (Caldeira and Wickett 2003),

Table 1. Effects of elevated CO, concentrations reported in diatoms

Effects Authors Species Aspects (% change)
Stimulative (Kim et al. 2006) Skeletonema costatum Growth (50%)
(Wu et al. 2010) Phaeodactylum tricornutum Growth (5.2%)
(King et al. 2011) Attheya sp. Growth (31%)
(Low-Décarie et al. 2011) Navicula pelliculosa Growth (100%)
(Sun et al. 2011) Pseudo-nitzschia multiseries Photosynthesis (21%)
(Gao et al. 2012b) Skeletonema costatum Growth (12%)
(Gao et al. 2012b) Phaeodactylum tricornutum Growth (16%)
(Yang and Gao 2012) Thalassiosira pseudonana Growth (6.5%)
Thalassiosira pseudonana Photosynthesis (17%)
(McCarthy et al. 2012) Thalassiosira pseudonana CCMP 1014 Growth (50%); PSII electron transport
under low light (18%)
(McCarthy et al. 2012) Thalassiosira pseudonana CCMP 1335 Growth (14%); PSII electron transport
under low light (72%)
(Li and Campbell 2013) Thalassiosira pseudonana CCMP 1335 Growth under low to optimal light (25%)
Unaffected (Riebesell et al. 1993) Ditylum brightwellii Growth
Thalassiosira punctigera Growth
Rhizosolenia cf. alata Growth
(Chen and Gao 2004a) Skeletonema costatum Growth; photosynthesis
(Kim et al. 2006) Nitzschia spp. Growth
(Crawfurd et al. 2011) Thalassiosira pseudonana CCMP 1335 Growth
(Boelen et al. 2011) Chaetoceros brevis Growth
(Gao et al. 2012b) Diatoms” Growth (moderate light)
(Yang and Gao 2012) Thalassiosira pseudonana Growth; photoinhibition
(Thnken et al. 2011) Chaetoceros muelleri Growth (moderate light)
(Boelen et al. 2011) Chaetoceros brevis Growth; photosynthesis
Negative (Wu et al. 2010) Phaeodactylum tricornutum Photoinhibition (14.5%); dark respiration (33.7%)

(Low-Décarie et al. 2011)
(Gao et al. 2012b)
(Gao et al. 2012b)

(Torstensson et al. 2012)
(Yang and Gao 2012)
(Thnken et al. 2011)

(Li and Campbell 2013)
(Sobrino et al. 2008)
(Mejia et al. 2013)
(Mejia et al. 2013)

Nitzschiapalea
Skeletonema costatum
Phaeodactylum tricornutum
Thalassiosira pseudonana
Navicula directa
Thalassiosira pseudonana
Chaetoceros muelleri
Thalassiosira pseudonana CCMP 1335
Thalassiosira pseudonana
Thalassiosira pseudonana
Thalassiosira weissflogii

Growth (-67%)

Growth (high light; —12%);

Growth (highlight; —10%); photorespiration (26%)
Growth (high light; —16%); photorespiration (24%)
Growth (=5%)

Dark respiration (—35%)

Growth (-10%)

Growth under excess light (—13%)
Photoinactivation (25%)

Decreased silicification (12%)

Decreased silicification (90%)

APhaeodactylum tricornutum, Skeletonema costatum, Thalassiosira pseudonana.
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equivalent to abouta 30% increase in the H' concentration. With a
further increase of CO, concentration in the atmosphere to
8001000 ppmv under the IPCC A1F1 scenario (Houghton
et al. 2001), by the end of this century, pH of the surface
oceans will decrease by another 0.3-0.4 units (Feely et al.
2004; Sabine et al. 2004; Orr et al. 2005), thus, increasing
[H'] by 100-150%. Consequently, organisms in the euphotic
zone will be exposed to a higher CO, and a lower pH, and their
physiologies will respond to changes in seawater carbonate
chemistry, as well as to secondary changes in ionic speciation
and cell surface chemistry driven by decreasing pH (Millero
et al. 2009; Flynn et al. 2012; Hervé et al. 2012; Sugie and
Yoshimura 2013). These chemical changes can directly affect
physiology of marine organisms (Portner and Farrell 2008), but
can also indirectly influence organismal responses to other
environmental factors including UV radiation (Sobrino et al.
2008; Gao et al. 2009; Chen and Gao 2011; Li et al. 2012a), light
(Bartual and Galvez 2002; Sobrino et al. 2008; McCarthy et al.
2012; Li and Campbell 2013), temperature change (Portner and
Farrell 2008; Zou et al. 2011) or nutrients (Burkhardt and
Riebesell 1997; Burkhardt et al. 1999; Riebesell and Tortell
2011; Li et al. 2012b).

Growth responses

Dissolved inorganic carbon (DIC) in surface seawater, at present,
is ~100-200 times that of CO, in the atmosphere, but most
seawater DIC is HCO;~, with CO, typically accounting for
less than 1% in pelagic waters (Gattuso et al. 2010). In
addition, CO, in seawater diffuses ~8000 times slower than in
air, which can kinetically limit marine photosynthetic carbon
fixation (Raven 1993; Riebesell et al. 1993; Morel ef al. 1994).
Growth of diatom species can, in turn, be limited by the
availability of CO, (Riebesell et al. 1993), and oceanic
primary production might thus be enhanced by increasing
atmospheric CO, concentration (Hein and Sand-Jensen 1997;
Schippers et al. 2004; Riebesell and Tortell 2011). However, the
growth rate of diatom-dominated phytoplankton assemblages
was not affected by an elevated pCO, concentration of
800 patm during 2—5 days shipboard incubation under ~30%
of incident sunlight (Tortell et al. 2000). Growth of Skeletonema
costatum was not stimulated by an enriched CO, concentration
(800 patm) under laboratory conditions (Burkhardt and
Riebesell 1997; Chen and Gao 2003, 2004a), but was
enhanced in a mesocosm at an elevated CO, concentration of
750 patm (Kim er al. 2006). Growth of the diatoms
Phaeodactylum tricornutum (Schippers et al. 2004; Wu et al.
2010), Navicula pelliculosa (Low-Décarie et al. 2011) and
Attheya sp. (King et al. 2011) were also enhanced under
elevated CO, levels under laboratory conditions. However, in
the diatom Chaetoceros muelleri, low-light treatments showed
lower growth rates under elevated CO, conditions, but no CO, or
pH effect was recorded under high light exposure (Thnken ez al.
2011). Under similar laboratory conditions, while growth of
Thalassiosira pseudonana (CCMP 1335) was not stimulated at
the elevated CO, levels of 760 (Crawfurd et al. 2011) or
1000 patm (Yang and Gao 2012), T. pseudonana (CCMP
1014 and 1335) grew faster under low (McCarthy et al. 2012)
tomoderate light (Liand Campbell 2013) with pCO, of 750 patm,
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but under higher light 7. pseudonana CCMP 1335 suffered
growth inhibition (Li and Campbell 2013). Growth rates of the
diatoms S. costatum (CCMAT110), P. tricornutum (CCMA 106)
and T. pseudonana (CCMP 1335), when grown under different
levels of sunlight and elevated CO, of 1000 patm, were
stimulated under lower light levels (5-30% surface daytime
mean solar PAR), but inhibited under higher light levels, with
a drop in the PAR threshold for growth saturation (Fig. 1). These
results show that elevated CO, and light levels interact to affect
diatom growth responses to ocean acidification, which may
explain the different results obtained under different
experimental setups, at least for the same species (Table 1).
Some of these growth responses may relate to CO, dependent
changes in the cellular susceptibility to photoinactivation of
PSII (Li and Campbell 2013) (see below). Since future
shoaling of upper-mixed-layer (UML) depths is expected to
expose phytoplankton to increased solar irradiance, marine
primary producers within UML are expected to suffer from
enhanced light stress. However, both low-light CO, growth
enhancement and high-light CO, growth inhibition could
occur even within a single daytime solar cycle or a vertical
mixing path, making the net community outcomes difficult to
predict. Boelen et al. (2011) did not find any interactive effects
of elevated CO, concentration and changing light levels nor
fluctuating light on the growth and photosynthesis in the
Antarctic diatom Chaetoceros brevis. Conversely, frequencies
of light fluctuation that mimic different mixing regimes affect
a coccolithophore’s response to ocean acidification (Jin et al.
2013a), implying an interactive effect of light fluctuation and
ocean acidification, that could impose an additional layer of
influence on the net species and community responses to
increasing pCO,.

Inorganic carbon acquisition mediated by elevated CO,

Diatom Rubisco shows comparatively high CO, affinity and
CO,/0, selectivity, and is served by CO, concentrating
mechanisms (CCMs) to supply CO, to Rubisco, and thereby
diminish photorespiration (Roberts et al. 2007a). CCMs differ
among studied diatom species. Thalassionema nitzschioides
(Trimborn et al. 2009), Thalassiosira weissflogii and
P. tricornutum (Burkhardt et al. 2001) actively take up both
CO, and HCO5 ™, whereas Thalassiosira punctigera exclusively
uses free CO, (Elzenga et al. 2000). T. pseudonana, though
lacking periplasmic (known also as extracellular) carbonic
anhydrase (eCA), can take up HCO; directly (Nimer et al.
1997; Elzenga et al. 2000; Nakajima et al. 2013), and indeed
uses HCO;3™ as the dominant substrate for photosynthesis even
under increased pCO, (Hopkinson et al. 2013; Isensee et al.
2013). The eCA and intracellular carbonic anhydrase (iCA)
facilitate Ci acquisition or utilisation by catalysing the inter-
conversion of CO, and HCO;5™.

The activity of eCA can be downregulated under elevated CO,
concentrations relevant to climate change (Burkhardt ez al. 2001;
Chen and Gao 2003; Rost ef al. 2003; Crawfurd ef al. 2011).
Therefore, active transport or use of HCO3™ could be lowered
under elevated CO,. Different growth conditions can therefore
bring about different efficiencies of algal CCMs or changing
preferences for CO, or HCO; ™ (Korb ef al. 1997; Nimer et al.
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Fig. 1. Light-dependence of diatom growth responses to elevated CO,
(HC, 1000 patm, pHr 7.68) compared with ambient CO, level (LC,
390 patm, pHr 8.02). Growth rates were stimulated by elevated CO, under
low to moderate PAR, but inhibited under higher PAR levels. The PAR
thresholds for the transition from CO, growth stimulation, under lower light,
to CO, growth inhibition, under higher light, were ~160 for Phaeodactylum
tricornutum (a), 125 for Thalassiosira pseudonana (b) and 178 amol photons
m~ 2 s, for Skeletonema costatum (c). These threshold light levels for the
transition for CO, growth stimulation to CO, growth inhibition correspond
to 22-36% of the incident surface solar PAR levels and are equivalent to
PAR levels at 26-39 m depth in the South China Sea. The semi-continuous
cultures were maintained under the sun and diluted every 24 h to ensure
stability of cell density ranges and the seawater carbonate system (from Gao
et al. 2012b).

1997; Burkhardt et al. 2001). In microalgae and in cyanobacteria,
very high CO, concentrations of up to 50000 patm (or ppmv in
air) turn off CCMs (Kaplan ez al. 1980; Tsuzuki and Miyachi
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1989; Raven 1991; Matsuda et al. 2001). CCM induction is
closely related to the intracellular Cipool, ambient CO, levels and
oxygen availability (Woodger et al. 2005). CO, levels (up to
1000 patm) relevant to future CO, levels projected for 2100 have
been confirmed to partially downregulate CCMs in marine
diatoms (Chen and Gao 2003; Trimborn et al. 2009; Wu et al.
2010, 2012a; Yang and Gao 2012) and to lower reliance upon
an intracellular labile carbon pool (Isensee et al. 2013).
Downregulation of CCMs can include decreased CO, affinity
resulting in an increased requirement for pCO, to support
photosynthesis, inhibition of carbonic anhydrase activity,
depressed HCO; ™ transport, and downregulation of PEPCase
and PEPCKase (Reinfelder et al. 2000; Giordano et al. 2005;
Roberts et al. 2007a,2007b; Raven 2010; Reinfelder 2011). Such
CCM downregulation was found to be synchronised with diurnal
photosynthetic performance in the diatom S. costatum (Chen and
Gao 2004b).

CCMs in diatoms might connect to multiple metabolic
pathways which differ among diatom species of differing
physiology or sizes. In P. tricornutum, cAMP metabolism is
involved to control CCM under elevated CO, levels (Harada et al.
2006). T. weissflogii appears to run a C;—Cy-intermediate
photosynthesis (Roberts et al. 2007a), which may concentrate
Ci through incorporation into an organic C, carbon compound,
before Rubisco-aided carboxylation (Reinfelder et al. 2000,
2004). However, in P. tricornutum, the C, path way was
recently suggested to contribute to pH homeostasis or
excitation dissipation, but not to a CCM function (Haimovich-
Dayan et al. 2013).

CCMs consume energy (Raven 1991; Bouma et al. 1994;
Crawfurd et al. 2011; Hopkinson et al. 2011). Active uptake of
HCO;™ and CO, is supported by cyclic and linear electron
transport in cyanobacteria (Li and Canvin 1998). Pseudocyclic
electron flow through the Mehler reaction can also contribute
(Siiltemeyer et al. 1993). The energisation mechanisms of diatom
CCMs are as yet unclear. It addition to the initial uptake, it takes
further energy to maintain high intracellular Ci levels by
counteracting CO, efflux (Sukenik et al. 1997; Tchernov et al.
1997) although in diatoms tested to date efflux rates appear small
(Burkhardt ez al. 2001; Trimborn et al. 2009). The major energy
expenditure by the CCMs in diatoms is active Ci transport, and a
doubling of ambient [CO;] could save ~20% of the CCM-related
energy expenditure in several diatom species (Hopkinson et al.
2011). Under elevated CO, concentrations, the growth
enhancement under limiting light levels could be partially due
to downregulation of CCMs, thereby lowering energy costs
(Raven and Johnston 1991; Gao et al. 2012b). Alternatively,
since CCMs can also be downregulated under low light, elevated
pCO; could have stimulated the low light growth of diatoms due
to both increased availability of CO, and savings on the energy
cost of CCM operation.

Photosynthetic responses

Light energy captured and delivered via photochemical processes
powers the active transport of CO, and HCOj3 in cyanobacteria
and microalgae (Siiltemeyer et al. 1993; Sukenik et al. 1997; Li
and Canvin 1998), and then assimilatory carboxylation. Elevated
CO, concentration had no significant effect upon pigment
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contents nor upon the effective absorbance cross-section serving
photosystem II photochemistry (Gpsy) in S. costatum,
P. tricornutum or T. pseudonana (Chen and Gao 2004a; Wu
et al. 2010; Crawfurd et al. 2011; McCarthy et al. 2012; Li and
Campbell 2013). Furthermore, elevated pCO, had only limited
effects on levels of the major protein complexes mediating
photosynthesis across multiple species of centric diatoms,
grown under low to saturating light (McCarthy et al. 2012; Li
and Campbell 2013).

The photochemical quantum yield of S. costatum,
P. tricornutum and T. pseudonana decreases faster with
increasing levels of PAR under elevated, than under ambient
CO, levels (Gao et al. 2012b). Non-photochemical quenching
(NPQ), however, increases faster in the high-CO, grown cells
with increasing light levels compared with the ambient CO,
grown cells (Gao et al. 2012b). Modulating NPQ helps
diatoms, like other photoautoauphs, to withstand high or
fluctuating levels of PAR (Niyogi et al. 2005; Lavaud et al.
2007; Zhu and Green 2010; Wu et al. 2012b). T. pseudonana
employs NPQ to cope with light stress, even under elevated
CO; levels, more effectively than does a strain of P. tricornutum
(Yang and Gao 2012), so that photoinhibition of electron
transport was observed in P. tricornutum, but not
T. pseudonana, when grown under elevated CO, of 1000 patm
(Wu et al. 2010). These differential responses between two
model diatoms show taxon-specific mechanisms in coping
with the combined impacts of ocean acidification and light stress.

At a functional level, the diatoms P. tricornutum and
T. pseudonana grown under elevated CO, of 1000 patm, at
subsaturating photosynthetically active radiation, showed an
increase in photosynthetic carbon fixation rate per cell of more
than 20% (Wu et al. 2010; Yang and Gao 2012). Their growth
rate was, however, only enhanced by ~5% in P. tricornutum
and was unaffected in T. pseudonana. Enhanced respiratory and
photorespiratory carbon losses under elevated CO, are likely
responsible for this discrepancy (Wuetal. 2010; Gao etal. 2012b;
Yang and Gao 2012). In the toxic diatom Pseudo-nitzschia
multiseries, maximum carbon fixation rates per cell also
increased with elevated CO, levels, although the apparent light
use efficiency was notaffected (Sun etal. 2011). In Cylindrotheca
closterium f. minutissima, when grown at 1000 patm CO, under
sunlight, rates of electron transport and O, evolution dropped
compared with the cells grown at the ambient CO, concentration
(Wu et al. 2012a).

PSII photoinactivation and UV responses

Diatoms, like all photoautotrophs, suffer light- and UV-
dependent photoinactivation of their PSII centres (Kok 1956).
To maintain their photosynthesis in the face of light-dependent
photoinactivation, diatoms must use a metabolically expensive
PSII repair cycle (Aro et al. 1993) to proteolytically remove
photoinactivated protein subunits (Nixon et al. 2010; Nagao
et al. 2012; Campbell et al. 2013) and replace them with
newly synthesised subunits (Edelman and Mattoo 2008). In
comparison with other phytoplankton groups, diatoms enjoy a
relatively low susceptibility to photoinactivation of their PSII
(Keyetal.2010; Wuetal.2011,20120).In T. pseudonana CCMP
1335, however, the primary susceptibility to photoinactivation
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of PSII changes under elevated pCO, (Sobrino et al. 2008;
McCarthy et al. 2012; Li and Campbell 2013). As a net result,
cells under high pCO, and high light incur an increased metabolic
expense to accelerate PSII protein cycling, to counter increased
photoinactivation (G Li, DA Campbell, unpubl. data). This
increased metabolic cost to maintain PSII function is a
possible explanation for the pattern of growth stimulation
under elevated pCO, under low to moderate light, but growth
inhibition under excess light (Gao et al. 2012b; McCarthy et al.
2012; Li and Campbell 2013). We are as yet unsure as to the
mechanism(s) for the changes in susceptibility to primary
photoinactivation under elevated pCO,. Decreased silification
under elevated pCO, (Mejia et al. 2013) might alter cellular
optics. Or, a drop in excitation dissipation capacity, as reported
in cyanobacteria (Tchernov et al. 1997) and now suggested in
diatoms (Haimovich-Dayan et al. 2013) could result if the
CCM is partly downregulated. Evidence in this direction is
that the content of the reactive-oxygen toxicity indicator
malondialdehyde increases in 7. pseudonana CCMP 1335
growing under elevated pCO, (Li and Campbell 2013),
consistent with a downregulation of paths with photoprotective
roles under elevated pCO,.

Solar UV radiation (UVR, 280-400nm) affects
phytoplankton physiology and primary productivity (Hadder
2011; and literatures cited therein). In 7. pseudonana,
acclimation to UVR, partially relieved the increased
susceptibility to photoinhibition under elevated pCO, (Sobrino
et al. 2008), consistent with a hormetic protective induction of
reactive oxygen species (ROS) detoxification by UV acclimation.
The effect of UV-B irradiance (280320 nm) on P. tricornutum
was counteracted under ocean acidification conditions (Li e al.
2012a). Cylindrotheca closterium f. minutissima did not show
any significant growth response to solar UVR after acclimation
to solar radiation, though a combination of UVR and elevated
CO, concentration led to significant drop in maximal electron
transport (Wu et al. 2012a).

Respiratory responses

Altered seawater carbonate chemistry due to ocean acidification
could perturb energy requirements for the diatom cells, leading
to changes in respiration. Mitochondrial respiration indeed
increases under ocean acidification conditions of 1000 patm
pCO, (pH 7.8) by ~34% in P. tricornutum (Wu et al. 2010)
and by 35% in T. pseudonana (Yang and Gao 2012). Increased
acidity of seawater associated with increased pCO, could disturb
cell surface (Flynn et al. 2012) or even intracellular pH stability,
so that phytoplankton cells may need to allocate additional energy
to transport ions against the acid—base perturbation. Cell surface
effects of increasing pCO, and decreasing pH will vary with cell
size and with the co-varying cellular metabolic rate (Flynn et al.
2012). Thus, increasing pCO, is likely to increase the influences
of'cell size on phytoplankton responses to environmental forcings
(Finkel et al. 2010; Flynn et al. 2012).

Photorespiration and electron flows to oxygen can be
important in photoprotection and short-term responses to
excess light in diatoms (Wingler et al. 2000; Waring et al.
2010). Both P. tricornutum and T. pseudonana showed
enhanced photorespiration by up to 23-27% under elevated
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CO, or ocean acidification conditions (Gao ez al. 20125). Cells of
T. pseudonana grown under the elevated CO, level of 1000 patm
showed higher carbon fixation rates but a lower net O, evolution
rate compared with cells grown under the ambient CO,, although
the cells exhibited equivalent electron transfer rates from PSII
(Yang and Gao 2012), providing evidence for enhanced
photorespiratory  or  pseudocyclic  re-consumption  of
O, released from PSII, under ocean acidification. Enhanced
excretion of organic compounds due to photorespiration can
connect to production of transparent exopolymers in
phytoplankton communities that include diatoms (Engel
2002). These metabolic pathways could result in discrepant
effects of ocean acidification on different species or under
different light levels.

Effects on diatom communities across diverse habitats

Although photosynthesis of diatoms is likely to be stimulated
by increased availability of CO,, lower pH might increase their
respiration (Wu et al. 2010; Yang and Gao 2012) and their costs
for photoprotection, therefore, the net effect of ocean acidification
on diatoms will depend on multiple environmental forcings and
possibly species-specific metabolic pathways.

Community level responses to rising pCO, and temperature
vary across oceanic regions. In the north-east Atlantic and
North Sea a 50 year (1960-2009) time series survey revealed a
decline of dinoflagellate abundance, whereas diatoms showed
relatively constant richness (Hinder et al. 2012). The transition
over the half century was attributed to ocean warming and
windy conditions. In contrast, elevated temperatures lowered
the short-term abundance of diatoms in a North Atlantic
Bloom incubation study (Feng et al. 2009), although CO,
changes had no apparent effect. A shipboard incubation study
that examined rising temperature and CO, in two natural Bering
Sea assemblages also found large community shifts away from
diatoms towards nanoflagellates in the ‘greenhouse’ treatment
(Hare et al. 2007), though diatom-dominated phytoplankton
growth increased in the Ross Sea under elevated CO, levels
(Tortell et al. 2008).

Across a CO, and pH gradient off the volcanic island of
Vulcano (Mediterranean, NE Sicily), periphyton communities
altered significantly as CO, concentrations increased, with
significant increases in chlorophyll a concentrations and in
diatom abundance (Johnson et al. 2013).

Feng et al. (2010) found no interactive effects of light and CO,
on community photosynthesis during an experiment using a Ross
Sea diatom/Phaeocystis assemblage, but the diatom community
structure shifted away from small pennate diatoms towards much
larger centric diatoms. In the very different conditions of the
South China Sea a shipboard incubation combining elevated
CO, concentration and near surface solar irradiances, showed
decreased photosynthesis while diatom abundance declined
(Gao et al. (2012b).

In hypoxic seawaters, algae may experience large changes
in the ratio of pO, to pCO; or respiration index (RI=1og;o (pO,/
pCO,)), which is predicted to decline in future oceans (Brewer
and Peltzer 2009). Together with lower pH, hypoxic areas
represent a future situation of combined ocean acidification
and deoxygenation. There has been little documented on the
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interactive effects of these two climate-change factors on diatoms
nor upon other marine primary producers. However, changes in
RI could affect net photosynthesis (Fig. 2) (Gao et al. 2012b;
Xu and Gao 2012). For diatoms grown under either elevated or
ambient levels of CO,, net photosynthetic O, evolution decreases
with increased RI (Fig. 2a, b).

Future efforts

Based on the work summarised here, priorities for future study on
diatoms include the following.

(1) Response of frustule mineralisation to elevated CO,
concentrations. Biogenic silicate content of some diatoms
decreases under ocean acidification conditions (Hervé ef al.
2012; Tatters et al. 2012; Mejia et al. 2013). However, we do
not know the mechanisms involved, nor the interactive
effects of multiple factors, such as warming, UV radiation,
nutrient limitation, deoxygenation and cell surface pH
(Flynn et al. 2012; Milligan and Morel 2002) upon silicate
mineralisation.

(2) Higher CO, concentrations appear to favour growth
enhancement of larger rather than smaller diatoms (Feng
et al. 2010) (Y Wu, AJ Irwin, D Suggett, D Campbell, ZV
Finkel, unpubl. data). Mechanistic studies are needed to
examine responses of differently sized diatoms to ocean
acidification, to discriminate among direct size effects
(Barton et al. 2013) and effects of taxonomic distinctions
in cell structures (Mitchell et al. 2013) or metabolisms.

(3) Coastal and pelagic water diatoms may react differently to
ocean acidification due to their pre-adaptations to different
regimes of mixing, nutrient and diel pH changes. In coastal
waters, photosynthetic carbon fixation, and night-time
respiration per volume of seawater is much higher, leading
to high pH during the day and low pH during the night. Little
is known about diatom responses to diel pH changes under
elevated CO, concentrations as well as to diel changes in the
respiration index of the water.

(4) To guide the scope of studies responses of diatoms to
ocean acidification should be examined under expected
combinations of environmental changes. Although UV
radiation appears not to influence the growth of some
diatoms under elevated CO, level (Wu et al. 2012a),
UV-B (280-315nm) seems to counteract some effects of
high CO, and low pH (Li et al. 2012a). Further studies are
needed to explore physiological responses of diatoms to
reasonable exposures to UV, temperature rise (Shatwell
et al. 2012), fluctuation of irradiance to model changing
mixing conditions, nutrient limitation and deoxygenation
under elevated CO, and acidification conditions. Hundreds
of genes in P. tricornutum are upregulated after acclimation
to ocean acidification conditions (Y Li, F Su, Y Wu, KJ
Wang, K Gao, unpubl. data), but little has been documented
on long-term acclimation of open ocean diatoms, and studies
on interactions between ocean acidification and the
progression from exponential to stationary phase are just
beginning (Orellana et al. 2013).

(5) Evolutionary responses to increasing CO, concentration in
diatoms should be examined for hundreds to thousands of
generations. The coastal strain Thalassiosira pseudonana
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Fig. 2. Decreased net photosynthetic O, evolution rates of algae with
increased external partial pressure ratio of O, to CO, or respiration index
(log1o(pO./pCO,): (a) diatoms Thalassiosira pseudonana and (b)
Phaeodactylum tricornutum and (c) green alga, Ulva prolifera, grown
under elevated (HC, 1000 patm) or ambient (LC, 390 patm) CO, levels
(re-constructed from Gao et al. 2012b; Xu and Gao 2012).

CCMP 1335 showed little evidence of evolutionary
adaptation over months of growth at elevated CO,
(Crawfurd et al. 2011). Evolutionary responses of the
freshwater green alga Chlamydomonas sp. at high CO,
demonstrated that some adapted cell lines lost CCM
capabilities (Collins and Bell 2004; Collins et al. 2006).
Lohbeck et al. (2012) found that 500 generations of selection
at high CO, led to recovery of a coccolithophore’s growth
rates and calcification, although 680 generations of selection
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at high CO, did not show such a trend in Gephyrocapsa
oceanica (Jin et al. 2013b).

(6) Monitoring community abundance of diatoms together with
other key taxa over longer time scales is important to gain
in situ information on their responses to environmental
changes (Mutshinda et al. 2013). These field data obtained
from different waters, when combined with mechanistic from
controlled experiments would provide valuable insight
into future climate change impacts upon phytoplankton
communities.
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