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Abstract. Chlorophyll d and chlorophyll f are red-shifted chlorophylls, because their Qy absorption bands are significantly
red-shifted compared with chlorophyll a. The red-shifted chlorophylls broaden the light absorption region further into far
red light. The presence of red-shifted chlorophylls in photosynthetic systems has opened up new possibilities of research on
photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we
report on the chemistry and function of red-shifted chlorophylls in photosynthesis and summarise the unique adaptations
that have allowed the proliferation of chlorophyll d- and chlorophyll f-containing organisms in diverse ecological niches
around the world.
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General distributions and properties of various
chlorophylls

Chlorophyll (Chl) is derived from the Greek words meaning
green (chloros) and leaf (phyllon) (Pelletier and Caventou
1818). They are greenish photopigments comprising a chlorin
ring and a magnesium atom (Mg) with a long hydrophobic
phytol chain attached (Fig. 1). Chlorophylls are only found in
oxygenic photosynthetic organisms and they play a vital role in
light-harvesting and energy transduction (Blankenship 2014).
So far, five chlorophylls – named Chl a, b, c, d and f after the
order of their discoveries – have been found in oxygenic
photosynthetic organisms, including plants, algae and
cyanobacteria (Chen et al. 2010; Chen 2014a, 2014b).

Chl a functions as a primary electron donor in nearly all
oxygenic photosynthetic organisms (Björn et al. 2009), with a
remarkable exception being found in the cyanobacterial group
Acaryochloris marina (Miyashita et al. 1996). Chl b is found in
themajority of eukaryotic photosynthetic organisms (virtually all
plants and green algae), and it is considered to be the primary
accessory pigment for light harvesting and energy transfer.
Additionally, Chl b is present also in prochlorophytes, a group
of cyanobacteria (La Roche et al. 1996). Chl c is a common name
formore than three closely related pigments namedChl c1, Chl c2,
and so on (Zapata et al. 2006). Structurally, they are quite
different from other chlorophylls, and are porphyrins instead
of chlorins (Fig. 1). They function as accessory photopigments
in light-harvesting complexes and are universally present in
many groups of marine algae, such as diatoms, brown algae
anddinoflagellates (Zapata et al. 2006).Chl dwasfirst discovered
as a minor component in red algae pigment extractions 70 years

ago (Manning and Strain 1943). Later, it was considered to be an
artificial by-product created during the extraction process (Holt
and Morley 1959; Holt 1961). The question of the presence of
Chl d in photosynthetic organisms naturally was not resolved
until the discovery ofA.marina in 1996. Chl d is the predominant
chlorophyll in this cyanobacterial species, constituting over 95%
of total chlorophylls, depending on the culture conditions
(Miyashita et al. 1996). Chl d can replace nearly all of the
functions of Chl a in A. marina, not only in light-harvesting
complexes (Chen et al. 2002; Tomo et al. 2011), but also in
reaction centres (Hu et al. 1998; Chen et al. 2005; Tomo et al.
2007). So far, several strains of Chl d-containing organisms have
been isolated and cultured, and all of those belong to one genus
of cyanobacteria, A. marina (Miyashita et al. 1996; Murakami
et al. 2004; Miller et al. 2005; Mohr et al. 2010; Larkum et al.
2012). There is very little information regarding Chl e due to
only two cases being mentioned as, unpublished data around the
1940s (Chen et al. 2010). All referenced work regarding Chl e
was HH Strain’s, unpublished data in 1943 (pigment extraction
from Tribonema bombycinum) and 1948 (pigment extraction
from Vaucheria hamata) (Chen et al. 2010). Additionally,
Chl e has never been isolated and chemically characterised,
therefore, the existence of Chl e still needs to be proved. To
avoid the subsequent confusion, the newly discovered chlorophyll
as ‘chlorophyll f’ based on the order of chlorophylls reported.
Chl f is themost red-shifted chlorophyll found to date (Chen et al.
2010). It was first discovered in a methanolic pigment extraction
of stromatolites collected from Shark Bay, Hamelin Pool,
Western Australia (Chen et al. 2010). Samples were cultured
under infrared light (720 nm LED light) for the initial purpose
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of isolating new Chl d-containing organisms. Further studies
indicated that Chl f only occupied around 10% of the total
chlorophylls in the marine filamentous cyanobacterium named
Halomicronema hongdechloris, which was isolated and purified
from the stromatolite sample as above. Further, Chl f is the first
chlorophyll known in which its biosynthesis is directly induced
by infrared light (Chen et al. 2012). More recently, Chl f was
reported in other cyanobacteria (Akutsu et al. 2011; Airs et al.
2014; Gan et al. 2014; Miyashita et al. 2014).

Spectral and photochemical properties of chlorophylls

The absorption spectra of chlorophylls can be described
according to the ‘four orbital’ model (Gouterman 1961).
Absorption spectra of chlorophyll show the electronic
transitions along the x-axis of the chlorophyll running through
the two nitrogen (N) atoms of rings II and IV, and along the y-axis
through the N atoms of rings I and III (Fig. 1). The two main
absorption bands in the blue and red regions are called Soret and
Q bands, respectively, and these arise from p!p* transitions of
four frontier orbitals (Weiss 1978; Petke et al. 1979; Hanson
1991). The lack of absorbance in the green spectral region, the
so-called the ‘green window’, is responsible for the green
colours of chlorophylls. The two lowest-energy transitions are
called Q bands and the two highest-energy transitions are named

B bands, also commonly called ‘Soret bands’ (Blankenship
2014). Taking Chl a as an example, the spectrum is
characterised by two roughly separated Soret (B) bands at
~444 and 392 nm and a relatively strong Qy band near 667 nm
in 100% methanol at 183K (Li et al. 2013).

Structurally, Chls b, d and f are identical to Chl a with a
chlorin macrocycle and a long phytol isoprenoid chain attached
at C17, except for the substitution of the (formyl group at
different positions of the chlorin macrocycle (Fig. 1). Chl f and
b share the same molecular formula (C55H70N4O6Mg), but the
substitution of the formyl group is at the C2 or C7 position
respectively (Fig. 1). Chl d (C54H68N4O6Mg) possesses a
formyl group at the C3 position, whereas a vinyl group is
found in Chl a at this position (Fig. 1). These differences of
macrocycle peripheral groups significantly affect the absorption
spectra of the chlorophylls (Hoober et al. 2007). Compared with
Chl a, the Soret band of Chl b is red-shifted to 457 nm compared
with 435 nm of Chl a and its Qy band is blue-shifted to 646 nm
in 100% acetone (Jeffrey and Humphrey 1975). The main Soret
and Qy bands of Chl d are red-shifted to 470 and 700 nm in 100%
methanol at 183K respectively (Li et al. 2013). The main Soret
band of Chl f is blue-shifted to 408 nm and its Qy band is red-
shifted to 712 nm in 100% methanol at 183K (Li et al. 2013), so
that Chl f has the widest ‘green window’ among all known
chlorophylls (Fig. 2) (Chen and Scheer 2013). Both Chl d and
Chl f have the red-shifted Qy peaks compared with that of
Chl a, therefore, Chl d and Chl f are also named as ‘red-
shifted’ chlorophylls. Photosynthetic organisms containing
red-shifted chlorophylls can thrive in environments where the
infrared light is enriched and visible light is limited (Kühl et al.
2005), whereas the Chl a- photosynthesis is limited by available
light due to its absorption properties (Fig. 2). In contrast, Chl b,
a blue-shifted chlorophyll that extends the absorption of light
towards the blue side of the ‘green window’, is more adapted to
terrestrial light environments (Chen and Scheer 2013).

Cyanobacterial strains possess unique chlorophylls

Prochlorococcus spp. are the smallest photosynthetic organisms
known to date with the spherical diameter of 0.5 to 0.7mm
(Partensky et al. 1999). They use 8-vinyl Chl a and 8-vinyl
Chl b (also named as 3,8, divinyl-Chl a and 3,8, divinyl-Chl b)
instead of using the Chl a and Chl b (having monovinyl at C3

position, Fig. 1) in their photosynthetic system (Goericke and
Repeta 1992; Chisholm et al. 1992; Partensky et al. 1993, 1999).
The Soret band of both 8-vinyl Chl a and 8-vinyl Chl b are red-
shifted by 8–10 nm, compared with Chl a and Chl b, extending
their absorbance at the blue side of the ‘green window’ (Morel
et al. 1993; Moore et al. 1995; Partensky et al. 1999). The
presence of 8-vinyl Chl a and 8-vinyl Chl b allows
Prochlorococcus spp. to adapt to the ecological niches in the
open-ocean, where blue light wavelengths are enriched
(Partensky et al. 1999; Ito and Tanaka 2011).

Acaryochloris marina is a unicellular cyanobacterium that
uses Chl d (constituting up to 90–99% of total chlorophylls) as
its major photopigment to carry out oxygenic photosynthesis
(Miyashita et al. 1996; Mimuro et al. 2004; Lin et al. 2013).
A. marina strains are found widely through various ecological
systems (Loughlin et al. 2013). Up to date, several strains of
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Fig. 1. Chemical structures of chlorophyll (Chl) with IUPAC/IUBMB
numbering for carbon atoms, and the directions. (a) The structure of
chlorin-type chlorophylls with different substitutions at rings I and
II. (b) The structure of porphyrin-type chlorophylls (i.e. Chl c family) with
different substitutions at ring II. Chlorin-type chlorophylls are esterified
with the phytyl tail (Phy, C20H39), which is absent in Chl c family. The
structure differences are highlighted in grey colour. Qy (nm) of Chl a, Chl b,
Chl d and Chl fwas recorded in 100%methanol (Li et al. 2012), and Qy (nm)
of 8-vinyl Chl a and 8-vinyl Chl b was recorded in a mixture of methanol
and acetone (Chen 2014b).
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A. marina have been isolated and cultured, A. marina
MBIC11017 (Miyashita et al. 1996), Acaryochloris sp.
AWAJI-1 (Murakami et al. 2004), Acaryochloris sp. CCMEE
5410 (Miller et al. 2005), Acaryochloris sp. HICR111A (Mohr
et al. 2010), and Acaryochloris sp. MPGRS1 (Larkum et al.
2012). Chl d0 and Pheo a are present as minor components,
but neither Chl a0 nor Pheo d is found in A. marina (Akiyama
et al. 2001). Acaryochloris sp. MBIC 11017 has a unique
phycobiliprotein arrangement, a rod-array structure rather than
a typical phycobilisome (PBS) (Marquardt et al. 1997; Hu et al.
1998; Chen et al. 2009). Each rod consists of four discs that are
formed by three hexamers (a6b6). This structure is located at
the stromal side of the thylakoid membrane and attached
primarily to the PSII-antenna supercomplexes (Chen et al.
2009). Alpha-carotene and its derivatives are only found in
two genera of cyanobacteria among all the prokaryotes:
Prochlorococcus spp. and Acaryochloris spp. In Acaryochloris,
a-carotene carries out the same function as b-carotene in the
other cyanobacteria (Loughlin et al. 2013).

There are four different species of Chl f-containing
cyanobacteria reported to date, H. hongdechloris,
cyanobacterium strain KC1, Leptolyngbya sp. JSC-1 and
Chlorogloeopsis fritschii PCC 6912 (Akutsu et al. 2011; Airs
et al. 2014; Gan et al. 2014). H. hongdechloris belongs to the
genus Halomicronema based on phylogenetic analysis and
morphological features (Chen et al. 2012). It is reported that
H. hongdechloris contains four main carotenoids and two
chlorophylls, Chl a and f (Chen et al. 2012). Chl a is
predominant chlorophyll under different light conditions

(Chen et al. 2012; Li et al. 2014). Therefore, H. hongdechloris
can acclimatise its pigment profiles to meet the requirements of
the light environment: using Chl f to absorb infrared light
under infrared-light-conditions and using phycobiliproteins
and Chl a to absorb the visible light region of 400 to 700 nm.
This infrared-light-inducible synthesis of Chl f appears to be
the case for the other recent discoveries of Chl f-containing
organisms: cyanobacterium strain KC1 (Akutsu et al. 2011),
Leptolyngbya sp. JSC-1 (Gan et al. 2014) and Chlorogloeopsis
fritschii PCC 6912 (Airs et al. 2014). Cyanobacterium strain
KC1 is a unicellular cyanobacterium; it is closely related to
unicellular cyanobacteria Aphanocapsa muscicola and has a
sister relationship to clade of Acaryochloris spp. (Akutsu et al.
2011; Miyashita et al. 2014). The sequence of 16s rDNA
between strains KC1 and H. hongdechloris only have 92%
similarity (Miyashita et al. 2014). Similar to H. hongdechloris,
the biosynthesis of Chl f only occurs when infrared light is
present and Chl a always functions as major photopigment,
under various light conditions. Therefore, it was suggested
that Chl f may function not as primary donor in reaction
centres, but instead as an antenna component where an uphill
energy transfer would be required to deliver the excitation
energy from Chl f to Chl a in reaction centres (Chen and
Blankenship 2011).

Leptolyngbya sp. JSC-1 was isolated from a floating
cyanobacterial mat from hot springs (~45�C) in the
Yellowstone National Park, Montana, USA (Brown et al.
2010; Gan et al. 2014). Since Leptolyngbya sp. JSC-1 can
thrive in hot environments up to 60�C; it is classified as a
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Fig. 2. The absorption and fluorescence spectra of chlorophylls (Chls) in 100% methanol and related
energy level diagram. The blue and red boxes represent Chl a absorption region. The grey-blue
represents the absorption extension at blue light region (mainly by Chl b and Chl d), and green boxes
represent the absorption extension at red light region (mainly by Chl d and Chl f). The upward vertical
arrows represent the vibronic transitions between the ground state and excited states. The Soret bands
with shorter wavelength corresponds to a transition to a higher excited state. The Qy absorption band with
longer wavelength of chlorophylls corresponds to light that has the energy required to cause the transition
from the ground state to the first excited state. The downward vertical arrow indicates the fluorescence.
Between absorption and florescence emission, relaxation processes as thermal equilibration occurs (heat
loss). ‘a, b, d and f’ represent Chl a, Chl b, Chl d and Chl f respectively.
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thermotolerant cyanobacterium. Leptolyngbya sp. JSC-1 is
filamentous with two morphotypes: isometric cells (length of
2.52� 0.41mm, width of 2.16� 0.13mm), and elongated
cylindrical cells (length of 2.89� 0.27mm, width of
1.62� 0.17mm) (Brown et al. 2010). The cell sizes of
cyanobacterium strain KC1 (unicellular cells with diameter
of 1.3–2.0mm and length of 1.3–3.0mm) and Leptolyngbya sp.
JSC-1 are much bigger than those of H. hongdechloris (length
of 1.0–1.3mm,width of 0.6–0.8mm) (Chen et al. 2012;Miyashita
et al. 2014). Leptolyngbya JSC-1 is a representative of a new
genus of Leptolyngbya closed to Leptolyngbya frigida Ant.
LH70.1 and Leptolyngbya sp. CENA 103 with <95%
similarity (Fig. 3; Brown et al. 2010). It has been reported that
strain Leptolyngbya sp. JSC-1 has a unique capability of
synthesising nine carotenoids and three chlorophylls (Chl a,
Chl d and Chl f) in response to different light conditions
(Brown et al. 2010; Gan et al. 2014).

Chlorogloeopsis fritschii PCC 6912 (C. fritschii) was first
isolated from the soils of paddy fields in India (Mitra 1950).
C. fritschii has a diverse morphology and diversity of function
depending on growth conditions (Evans et al. 1976), such as
filaments and aseriate forms of irregular clumps of cells.
Aseriate cells dominate under light condition of infrared light
and natural light (Airs et al. 2014). C. fritschii is able to
synthesise six carotenoids and three chlorophylls (Chl a, Chl d
and Chl f) (Airs et al. 2014). We note that the production of
Chl f and Chl d are found in C. fritschii grown under both
infrared light and natural light conditions (Airs et al. 2014).
The content of Chl f was maximised to ~6% of that total
chlorophylls under infrared light condition (Airs et al. 2014),
only half of that observed in H. hongdechloris grown under
same condition. The highest ratio of Chl d to Chl awasmaximum
of 1% observed in infrared light-grown cells (Airs et al. 2014).
Further, the ratio of Chl f to Chl d remained relatively unchanged
when cells grown under both infrared light and nature light (Airs
et al. 2014). In addition, the aseriate forms of C. frischii cells
may create a microenvironment with enriched infrared light,
due to the self-shading (Airs et al. 2014).

Predicting the occurrence of Chl f-containing organisms
and towards the isolation of novel Chl f-containing
organisms

H. hongdechloris was isolated from the inner layers of
stromatolites collected from Shark Bay, Western Australia
(Chen et al. 2010, 2012). Since Chl f was discovered, only
three other studies have reported the occurrence of Chl f-
containing organisms. A comparison of the four organisms
that have Chl f demonstrates that these organisms thrive in
quite different ecological niches, including freshwater lakes,
hot springs, the ocean and soil. These organisms also have
very distinct morphological features. Two are filamentous and
one is unicellular and all belong to different phylogenetic
groups (Fig. 3). However, one common feature shared among
them is the presence of Chl f when they are cultured under
infrared light conditions. Thus, using >700 nm LEDs could
play a significant role discovering the presence of Chl f and
help improve our understanding of the ecological distribution of
Chl f-containing organisms. This presents the possibility that

Chl f production might be overlooked in many culture
collections because infrared light not commonly applied in the
culture of cyanobacteria or algae. The variation of Chl f-
containing cyanobacteria also supports the idea that Chl f is
the result of environmental adaptation.

Such organisms should only be found in certain habitats that
are enriched in far-red light and depleted in visible light; for
example, the interior of the microbial mat within the stromatolite
where the first Chl f-containing organism was discovered (Chen
et al. 2010, 2012). The visible region of light is absorbed by the
photosynthetic organisms harboured in the upper layer. Cells
residing beneath this layer are capable of utilising Chl f (or Chl d)
in order to capture leftover infrared light to drive photosynthesis.
However, knowledge of the distributions of Chl f-containing
organisms in the environment is still largely unknown.

The acquisition of new or additional chlorophylls by
photosynthetic organisms is thought to be an adaptation to the
light quality of their niches (Croce and van Amerongen 2014).
An organism that only contains Chl a (e.g. Synechococcus)
cannot survive in an environment with 720 nm light (Duxbury
et al. 2009), whereas H. hongdechloris thrives in infrared light
(730 nm LED). Different O2 evolution activities were observed
between Chl f-containing infrared light-grown cells and white-
light-grown cells, when illuminated by infrared light, which
confirms the spectral expansion of oxygenic photosynthesis
afforded by the presence of Chl f in H. hongdechloris (Li et al.
2014). These results not only demonstrate the benefit of
possessing Chl f of extending the range of PAR to the infrared
region, but also indicate that Chl f must contribute to the energy
input of those cyanobacteria under such unique light conditions.
Thus, the study of Chl f could improve our understanding of
the ecological significance of spectral extension in natural
photosynthetic systems (Chen and Blankenship 2011).

Oxygenic photosynthesis and its physical limits

Photosynthesis is a biological solar energy storage process with
two photo-excitation photosystem/reaction centres in oxygenic
photosynthesis (Blankenship and Hartman 1998; Barber 2009;
Kalyanasundaram and Graetzel 2010). The electron-donors
P700 (PSI) and P680 (PSII), both Chl a molecules, will
elevate the redox spans that allow the charge separation in the
reaction centre and transfer the electron from water to NADP
thermodynamically downhill (Fig. 4).

In general, oxygenic photosynthesis driven byChl a andChl b
(not red-shifted chlorophylls) has long wavelength absorbance
spectra extending to limits of ~700 nm due to the high energy
requirements of splitting water and oxygen production (Björn
et al. 2009). Removal of electrons from water requires powerful
oxidative potential and hence the presence of P680 (Em = 1.23V)
is vital for oxygenic photosynthesis (Dau and Haumann 2008),
although the long wavelength light has an excited state redox
potential that is sufficiently negative to power the reduction of
the primary electron acceptor, such as anoxygenic (non-oxygen
evolving) photosynthesis driven by bacteriochlorophylls
(Blankenship and Prince 1985).

Chl awas thought to be the only chlorophyll that can generate
enough energy to split water and evolve oxygen as a by-product
of oxygenic photosynthesis (Björn et al. 2009). It was thought
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Fig. 3. Phylogenetic tree of cyanobacterial 16s rDNA. The unique chlorophyll contents are listed at right side. All others have
chlorophyll a only. The phylogenetic tree was constructed by neighbour joining (NJ)method using 16S rDNA sequences of ~1025 bp
(without gap). The sequences are alignedwithmultiple sequence alignment tools (ClustalW).The alignmentwas thenmanually edited
based on the alignment of Chen et al. (2012). The evolution distance was calculated with Kimura 2-parameter model with 10 000
repeats usingMEGA5.0. The sequence data of Acaryochloris sp. Awaji-1,Aphanocapsa muscicola 5N-04,Aphanocapsa muscicola
VP3–03, Aphanothece minutissima 2 LT34S03, Calothrix sp. PCC 7507, Chlorogloeopsis fritschii PCC 6718, Chlorogloeopsis
fritschii PCC 6912, Chlorogloeopsis sp. PCC 9212, Fischerella muscicola PCC 7414, Leptolyngbya frigida ANT.L70.1,
Leptolyngbya sp. CENA103, Leptolyngbya sp. CENA112, Leptolyngbya sp. strain JSC-1 are obtained from NCBI with
accession number of AB112435, FR798920, FR798916, FM177488, NR102891, AF132777, NR112197, AB075982,
AF132788, AY493574, EF088339, EF088337, FJ788926 respectively. The sequence data of Cyanobacterium strain KC1 is
kindly provided by Professor Hideaki Miyashita. The other strains are downloaded from NCBI as described by Chen et al. (2012).
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that long wavelength light (>700 nm) contains low energy
photons and is not sufficiently energetic to oxidise water
(Blankenship and Prince 1985; Chen and Blankenship 2011).
The traditional view of oxygenic photosynthesis was challenged
with the discovery of red-shifted chlorophylls. Since 1996,
research on Chl d-driven photosynthesis has expanded our
understanding of the molecular mechanism of oxygenic
photosynthesis (Loughlin et al. 2013). The investigation of
Chl d and its photosynthetic reactions in A. marina has
overturned the long-standing belief concerning the ‘red-edge’
of photosynthesis driven by Chl a.

The discovery of Chl f and its containing organisms open the
PARwindow evenwider, predicting to extend the photosynthetic
absorbance region up to 760 nm, far beyond the absorbance limits
of 700 nm for Chl a and 740 nm for Chl d.

Previous studies have demonstrated that ‘red chlorophylls’
with Qy absorption maxima up to 760 nm can be found in several
oxygenic photosynthetic organisms (Koehne et al. 1999;
Schlodder et al. 2005; Wilhelm and Jakob 2006). These ‘red
chlorophylls’ are mostly found in light-harvesting complexes,
although the formation and function of those ‘red chlorophylls’ in
energy storage is under debate (Melkozernov and Blankenship
2003; Corbet et al. 2007). The properties of these ‘red
chlorophylls’ are accomplished using Chl a, whereby its
spectrometric properties are modified by the protein
environment, rather than modifying the chemical structure of
the chlorophyll. However, the red-shifted spectrometric
properties of Chl d and Chl f are accomplished by the

modification of the chemical structure of the chlorophyll
(Chen et al. 2010; Willows et al. 2013).

Chen and Blankenship (2011) suggested that an uphill energy
transfer is needed to deliver excitation derived from red-shifted
photons to the Chl a-containing reaction centres which had the
normal absorbance spectra (P680 and P700) that are significantly
‘bluer’ (i.e. higher energy) than the red-shifted chlorophylls. In
the Chl d-containing cyanobacterium, A. marina, Chl d (P740)
replaces Chl a in P700, which prevents the energy transfer from
a significant uphill energy transfer (Hu et al. 1998; Mimuro et al.
2000; Chen and Blankenship 2011). However, the red-shifted
chlorophylls might encounter the energy losses during the
subsequent photochemistry that critically affect the efficiency
of electron-transfer, and thereby energy storage. A recent study
investigating the redox potential of the Chl d special pairs
in A. marina reported no differences for the redox potential
level between Chl a-containing cyanobacteria and A. marina
(Allakhverdiev et al. 2010; Allakhverdiev et al. 2011). For PSII
reaction centre inA.marina, there is general agreement that Chl a
is replaced by Chl d, at least at accessory sites (ChlD1 and ChlD2)
(Chen et al. 2005; Tomo et al. 2007) and Pheo a (instead of
Pheo d) is the primary acceptor of D1-side as in other oygenic
photosynthetic organisms (Tomo et al. 2007, 2008). However, a
controversy over the identities of the special pair chlorophylls
in RC II has been debated more than 10 years due to the lack of
the purified PSII reaction centre complexes (Chen et al. 2005;
Itoh et al. 2007; Tomo et al. 2007). Further investigation
is required for understanding the molecular mechanism of Chl
d-photosynthesis, including the nature of RCII in A. marina. The
energy transfer efficiency analysis of Chl d-photosynthesis
revealed similar rates between Chl a-photosynthtic systems
and Chl d-photosynthetic systems (Mielke et al. 2013).

Whether Chl f is involved in charge separation in the reaction
centres, or only captures light energy in light harvesting complex,
is still unknown. If Chl f is functional in light harvesting
complexes, this means an uphill energy transfer is required for
Chl f to deliver the energy to the Chl a in reaction centres. A new
energy transfer pathway may be expected to support such a
theory. However, if Chl f is involved in charge separation in
the reaction centre, it is also unclear whether Chl f is capable of
using the lower energy to oxidise water and produce oxygen.
Water oxidation andoxygenproduction, driven byphotosynthesis,
requires higher energy input than non-oxygenic photosynthesis
and it is this that determines the minimum energy input for
photosynthetic reactions.

Chen and Blankenship (2011) point out the importance of
the spectral region >700 nm.Due to themaximum solar spectrum
occurring in spectral region >700 nm, and when the solar
spectrum is represented as photon flux, every increment in the
ability to utilise photons >700 nm can have a significant effect on
the available energy utilised for photosynthesis. The ability to
utilise light 50 nm outside the PAR spectrum (to 750 nm) results
in an increase in the number photons available for photosynthesis
by 19%. In oxygenic photosynthetic organisms, this expansion of
the solar spectrum can be accomplished using available pigments
such as red-shifted chlorophylls, especially the most red-shifted
chlorophyll to date, Chl f. Such an expansion is recognised as a
good potential source of photons to drive photosynthesis at
higher efficiency.

Fig. 4. Z-scheme of oxygenic photosynthesis and the comparison the
energy levels of photosystems driven by chlorophyll a (P680 and P700)
and chlorophyll d (P713 and P740). Black and red arrows represent
the changes of redox potential generated by photoexcitation of the primary
donors in the photosystems having different ‘special pair’ chlorophylls, blank
arrows, chlorophylla-photosystems; red arrows, chlorophylld-photosystems.
To explore the red-limits, the redox potential for water splitting (H2O/O2)
or hydrogen peroxide (H2O2/O2) and NADP+/NADPH redox reactions are
marked as references. The photosystem potentials are taken from
Allakhverdiev et al. (2010).
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The discovery of red-shifted chlorophylls has forced a re-
evaluation of our understanding of the minimum threshold
energy required for oxygenic photosynthesis. Studies of red-
shifted chlorophylls have contributed to a better understanding
of the molecular mechanisms of photosynthesis driven by red-
shifted chlorophylls. The question remains as to whether or not
this limit can be extended even further to longer wavelengths,
and if so, how far the physical limit of oxygenic photosynthesis
can hold. Understanding the mechanisms underlying the
putative functions of Chl f in the reaction centres could help us
to understand what the minimum threshold energy for
oxygenic photosynthesis is. Chl f could possibly contribute to
improving the efficiency of photosynthesis by extending the
photosynthetically available spectrum further into the infrared
than previously thought.

There are two potential applications of red-shifted
chlorophylls. First, such chlorophylls would increase the
ability of photosynthetic organisms to use light in an additional
region of the solar spectrum. This could lead to significant
improvements in agricultural efficiency or bioenergy storage if
red-shifted chlorophylls can be integrated into algae or higher
plants. This would theoretically give Chl a, b or c-containing
oxygenic photosynthetic organisms access to approximately
an additional 19% photon flux compared with other oxygenic
photosynthetic organisms, which can only can absorb standard
PAR (Chen and Blankenship 2011). An additional 19% photon
flux in any oxygenic photosynthetic organism could be very
significant on a global bioenergy scale. Such an increase could
significantly increase food, fuel, or biomass production. Second,
red-shifted chlorophylls may also be useful for remote sensing
and detection of plants that contain this unique pigment due to
their distinguishing red-shifted fluorescent properties.
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