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Abstract. Roots and shoots are distantly located but functionally interdependent. The growth and development of these
twoorgan systems compete for energy andnutrient resource, andyet, they keep a dynamicbalancewith eachother for growth
and development. The success of such a relationship depends on efficient root-shoot communication. Aside from the well-
known signalling processes mediated by hormones such as auxin and cytokinin, sugars have recently been shown to act as a
rapid signal to co-ordinate root and shoot development in response to endogenous and exogenous clues, in parallel to their
function as carbon and energy resources for biomass production.Newfindings from studies on vascularfluids have provided
molecular insights into the role of sugars in long-distance communications between shoot and root. In this review, we
discussed phloem- and xylem- translocation of sugars and the impacts of sugar allocation and signalling on balancing
root–shoot development. Also, we have taken the shoot–root carbon–nitrogen allocation as an example to illustrate the
communication between the two organs throughmulti-layer root–shoot–root signalling circuits, comprising sugar, nitrogen,
cytokinin, auxin and vascular small peptide signals.
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Introduction

Land plants possess two basic organ systems: the shoot
(aboveground) and the root (underground). The former is
responsible for capturing solar energy and atmospheric carbon
dioxide, using photosynthesis to turn these into organic carbon
(i.e. sugars), which is then used for development and biomass
production of all plant organs. The latter, the roots, anchor the
plant in and acquire water and inorganic nutrients from the soil.
To optimise growth in an ever-changing environment, plants
must balance the distribution between the two organ systems for
energy, nutrient and water resources. The success of this co-
ordination depends on effective root–shoot communications. For
example, under soil water deficiency, quick stomatal closure is
induced to minimise water loss by root-derived hormone, ABA,
ahead of changes in leaf water status (Bates and Hall 1981; Stoll
et al. 2000). Similarly, low leaf nitrogen status could generate a
shoot-to-root signal to alter root physiology, leading to activation
of nitrate uptake (Forde 2002). Numerous studies have
established that a sophisticated hormonal signalling network
regulates these root–shoot communications (e.g. Sauter et al.
2001; Dodd 2005; Schachtman and Goodger 2008; Puig et al.
2012). In contrast, much less attention has been paid to the
impacts of carbon flow and sugar signalling on co-ordinating
shoot and root development.

Sucrose (Suc) is the primary photoassimilate for long distance
translocation through phloem in most higher plant species. Apart

from its crucial role as carbon source for energy and building
blocks, Suc has also been shown to act as a long-distance signal to
co-ordinate plant development (Kircher and Schopfer 2012;
Mason et al. 2014). The rapid transport of Suc in the phloem
(e.g. ~150 cm h�1 vs that of auxin at just ~16 cmh�1 in Pisum
sativum cv. Torsdag, see Mason et al. 2014) highlights its ability
for instantaneous response. It remains unknown in many cases
whether it is the Suc itself or its derivatives, such as glucose (Glc),
fructose (Fru) or trahalose-6-phosphate (T6P) that function as
signalling molecules to regulate development (Ruan 2014).

There are many sugars also detected in the xylem sap
(Schill et al. 1996; Iwai et al. 2003; Secchi and Zwieniecki
2012), which opens up the possibility of an acropetal sugar
transport from roots to shoots and leaves. Together, it becomes
possible for a circuit sugar signalling pathway to operate at the
whole-plant level through the vascular system. Furthermore,
recent studies have revealed significant interactions between
sugars and other signalling components including hormones,
microRNAs, reactive oxygen species (ROS) and many other
signalling molecules (Considine and Foyer 2014; Matsoukas
2014; Tsai and Gazzarrini 2014; Ljung et al. 2015; Yu et al.
2015). Clearly, sugars are major players in the global signalling
network regulating plant development, crop yield and response to
biotic and abiotic stress (Ruan 2014).

The aim of this review was to evaluate the current
understanding of sugar allocation and signalling in root–shoot
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development, and to provide an insight into the global-level
communication that integrates nutrition and growth signalling.
First, we have discussed the possible routes for long-distance
sugar transport and signalling. Thenwe havemade an assessment
of the roles of shoot-to-root sugar signalling in coupling
root–shoot development. Finally, we have discussed root–
shoot–root signalling circuits in co-ordinating the growth of
these two distantly-located organs, using nitrogen-carbon
balance as an example.

Long distance carbon flow and signalling circuit through
phloem and xylem

Allocation of carbon resource from photosynthesising leaves
(source) to non-photosynthetic organs (sink) relies on an
efficient and highly controlled phloem transportation system.
Among all the photosynthetically-fixed carbohydrates, only a
few are able to be transported in the phloem over a long-distance
(Lemoine et al.2013). In this context, sucrose (Suc) is the primary
form of assimilates translocated via phloem over a long-distance.
The accumulation of Suc in the phloem of the source leaves
attracts water osmotically, creating high turgor pressure, which
drives mass flow of assimilates towards the sinks (Ruan et al.
1996). Recent reviews describing sugar transport pathways and
transporters are also available elsewhere (Osorio et al.2014;Chen
et al. 2015; Fettke and Fernie 2015; Hedrich et al. 2015). Besides
Suc, phloem hexose transport has also been reported for a limited
number of species (van Bel and Hess 2008). However, these
results were questioned by Liu et al. (2012). Oligosaccharides
of raffinose family are indirectly involved in the building up of
sugar concentrations in the phloem by polymer trapping (e.g.
Rennie andTurgeon 2009). Plyols (mainly sorbitol andmannitol)
are translocated through phloem, in some species such as apple
(Noiraud et al. 2001). Overall, for most plant species, Suc is the
main carbon resource moving from shoot to root or other sinks
in the phloem, together with many other nutrients, transcripts,
proteins and signalling molecules (Turgeon and Wolf 2009).
For example, Suc was estimated to be 433mM from phloem
exudates ofRicinus communisL., accounting for 72%of total sap
osmolality (Patrick 2013). Phloem sugar distribution is directly
linked to the cellular pathways of assimilate transport and sugar
metabolism inboth ‘the giver’ and ‘the taker’ (Palmer et al.2015),
and can be affected by many environmental factors that alter
shoot–root relationship (Liu and Vance 2010; Lemoine et al.
2013).

In contrast with the translocation of phloem sap from shoot to
root, the root-to-shoot translocation is mediated by xylem sap
flowdriven bywater loss through leaf transpiration. Some soluble
sugars including Suc, Fru, and sugar polymers such as
oligoarabinogalactan, oligoglycan and myo-inositol, have also
been detected from the xylem sap of many species, such as maple
(Schill et al. 1996), squash (Iwai et al. 2003), walnut (Améglio
et al. 2004) and black poplar (Secchi and Zwieniecki 2012).
However, it remains unclear how Suc or other sugars may have
reached xylem vessels. One possibility is that Suc continuously
leaks out from the phloem ((Minchin andMcNaughton 1987; van
Bel 2003) to the xylem/phloem parenchyma cells, which then
diffuses to the transpiration stream. Indeed, apart from water
and mineral elements, the xylem transpiration stream is full of

hormones, transcripts, proteins, carbohydrates and other small
organic chemicals (Pérez-Alfocea et al. 2011).

Interestingly, analysis inPopulus trichocarpaTorr. &A.Gray
has revealed that Suc infiltration into xylem resulted in a
simultaneous physiological and molecular response, including
reduction of the starch pool in xylem parenchyma cells and
induction of expression of genes encoding aquaporins,
amylases and sugar transporters, similar to the response
induced by embolism, a formation of air bubble in xylem
blocking or impeding long distance transport of xylem sap
(Secchi and Zwieniecki 2011). Evidence provided from this
study indicates Suc may function in sensing embolism and
triggering the refilling in xylem vessels. Further studies are
required to understand the dynamics of this xylem-mediated
carbon flow and to determine whether it plays a role in root-
to-shoot communication. In addition to simple sugars (Suc, Glc
and Fru), some oligosaccharides may also function as elicitors
in stress responses (Fry et al. 1993; John et al. 1997; Shibuya
and Minami 2001), and probably be involved in long-distance
signalling throughxylem transportation (MacDougall et al.1992;
Iwai et al. 2003).

Notably, recent research centered on the secreted oligopeptides
shed lights on a root-to-shoot-to-root signalling feedback circuit
in plants (reviewed by Notaguchi and Okamoto 2015). In this
scenario, signal molecules generated in root system in response to
the soil environments could move towards shoot via the xylem,
translocated to the phloem through shared vascular parenchyma
cells and perceived by potential receptors in the phloem. The
perception of root-derived signals could elicit molecular and
biochemical responses in shoot, which could relay the same
signal or generate new signals for delivery through the phloem
sap to the rest of the plants including the root. Although the
mechanism by which sugar signalling participates in root-shoot-
root signalling circuit remains to be elucidated, such a possibility
of bi-directional signalling does appear to beplausible basedon the
observations on the presence of sugars in both xylem and phloem
and the intimate anatomic and functional coupling between the
two vascular systems.

Shoot-to-root Suc transport in co-ordinating plant
development

As the main assimilate transported from shoot to root, Suc is
required as the original and primary carbon resource for root
development. Recent findings from Arabidopsis seedlings
highlight the importance of Suc basipetal translocation in
coupling shoot–root development as discussed below.

In early seedling development, light is known as a key factor
affecting shoot and root development (Salisbury et al. 2007; Page
et al. 2011). A more recent study revealed that photosynthetic
Suc transported from shoot (cotyledon) to the root function as
a direct signal to activate and promote Arabidopsis root
elongation in a light-dependent manner (Kircher and Schopfer
2012). The findings from this report and other studies support
the following model on how young seedlings efficiently use their
carbon resource to co-ordinate root–shoot growth with light
availability and quality. Firstly, at the early germination stage,
seedlingmaybe in thedarkor in the shadewithnophotosynthesis.
Most of the carbon resource pre-stored in the cotyledons fuels the
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hypocotyl elongation, whereas the root growth is stalled. At
the meantime, a low ratio of red : far-red light under shade also
induces hypocotyl elongation and promotes shoot over root
growth (Page et al. 2011). As a result, cotyledons, together
with shoot apex, are pushed towards the light. Thereafter, the
de-etiolated seedling begins to photosynthesise to produce Suc
acting as a shoot-to-root signal and nutrient and energy source to
support root elongation to acquire belowground resources. The
import of assimilate to roots is highly responsive to changes in
Suc availability. For instance, studies in barley seedlings revealed
a reduced carbon import to roots in response to either increased
pool size of sugars within the roots (Farrar andMinchin 1991) or
reduced supply from source leaves (Minchin et al. 1994).

Apart from Suc, other sugars such as Glc, were also reported
to regulate root growth through: (i) driving target-of-rapamycin
(TOR) signalling to instigates root meristem cell division (Xiong
et al. 2013); (ii) interacting with auxin via heterotrimeric G
protein complex to promote lateral root (LR) formation
(Booker et al. 2010); and (iii) regulating brassinosteriod (BR)
signalling and downstream auxin transportation to affect root
directional responses and eventually root architecture (Singh
et al. 2014). It may be that the phloem unloaded Suc may
generate a Glc signal in the root, through the activities of
Suc-cleavage enzymes, invertase and or sucrose synthase (Sus)
to fulfil the reprogramming of gene expressions (Ruan 2014).
Further research to determine the identity of sugar signalling
pathway in the root is necessary to understand the nature of Suc-
or Glc-mediated root growth.

Compared with the seedling stage, the regulation of Suc on
root development at late growth stage is less studied. However,
deficiency of Suc has been identified as a major cause of grain or
seed abortion under drought, possibly owing to reduced Glc that
activates programmed cell death (Ruan 2012; Liu et al. 2013).
Whether this is the case in roots of mature plants remains to be
tested.

In addition to Suc or Glc, shoot-derived auxin has also been
identified to regulate primary root elongation in a light-dependent
manner (Sassi et al. 2012). To this end, Sucmoves much faster to
axillary buds than local depletion of auxin (indole-3-acetic acid,
IAA) to activate bud outgrowth in pea (Mason et al. 2014). This is
likely due to the fact that Suc is translocated throughmass flow in
the phloem, whereas the cell-to-cell movement of auxin from
shoot apex to axillary bud is probably mediated through the
AUXs, PINs, auxin influxers and effluxers respectively (Wang
and Ruan 2013). By deduction, it seems possible that the shoot-
to-root Suc translocation may act as a light-induced signal, ahead
of auxin, to promote root development. However, one cannot
rule out the possibility that sugar and auxin may crosstalk with
each other to modulate root development, as shown in other
physiological and developmental contexts (Mishra et al. 2009;
Wang and Ruan 2013; Ljung et al. 2015).

Clearly, the shoot-to-root Suc translocation is a critical factor
in co-ordinating plant development, andmust be tightly balanced.
Brauner et al. (2014) provided an example that disruption of this
balance limited the growths of both shoot and root. In the
plastidial phosphoglucomutase (PGM) loss-of-function mutant
(pgm), the inability of leaves to synthesise starch leads to the
accumulation of Suc, Glc and Fru in the light, which are rapidly
depleted during early night under a long-day light period, and

resulted in carbon starvation during the remaining night (Apelt
et al. 2015). However, the pgm mutant exhibited dramatically
increased shoot-to-root sugar supply during the day and the
first 4 h of the night, leading to exaggerated root respiration in
pgm (Brauner et al. 2014) and inhibited protein synthesis and
increased protein turnover at night (Ishihara et al. 2015).
Consequently, the pgm mutant displayed restricted biomass
formation in both the root and the shoot. We note that the
sugar uptake by root largely exceeded its metabolic demand
(Brauner et al. 2014). It remains unknown whether the
enhanced Suc export by shoot functions as a mechanism to
maintain leaf photosynthesis which was not altered in the pgm
mutant, or Suc is ‘drawn’ to the root by an error signal derived
from root. Further investigation of the dynamics of sugar
metabolism in pgm root, especially the activities of Suc-
cleavage enzymes and sugar transporters, and the subcellular
compartmentation of the sugars (e.g. vacuole vs cytoplasm),
could provide valuable information in understanding how root
achieves this over-demanding for sugars.

Root-shoot-root signalling: coupling between C and N
uptake and assimilation

Sugars also crosstalk with many other signalling and metabolic
processes to regulate local and systemic signalling pathways
(Bailey-Serres and Voesenek 2010; Eveland and Jackson
2012; Ruan 2014; Tsai and Gazzarrini 2014; Ljung et al.
2015). As an example, we evaluated below the current
understanding on Suc signalling in controlling plant nitrogen
(N) balancing. Recent studies have revealed intriguing
interactions among sugars, nitrate and many other long-
distance mobile signals including cytokinin, auxin, CEP/CLV
peptides (Hartig and Beck 2006; Ruffel et al. 2011; Singh et al.
2014; Notaguchi and Okamoto 2015).

Nitrogen is the most abundant inorganic nutrient for plants.
Most plant species use nitrate (NO3

�) as a major N source, along
with ammonium (NH4

+) salts (Bloom 2015). Depending on
species and soil NO3

� abundance, root NO3
� can be either

assimilated in the root or translocated to the aerial parts of the
plants through xylem sap for assimilation in the shoot (Andrews
1986). Typically, shoot dominates NO3

� assimilation at high
soil NO3

� environment in most plants (Krapp 2015). Phloem
loading of NO3

� has been shown in both source leaves (Fan et al.
2009; Kiba et al. 2011; Hsu and Tsay 2013) and root companion
cells (Wang and Tsay 2011), mediated by phloem-localised
NO3

� transporters. The former process contributes to NO3
�

remobilisation to younger leaves during N deficiency, whereas
the latter facilitates NO3

� loading into the root phloem for
downward transport in the roots.

Carbon (C) skeletons are essential for the assimilation of
inorganic N into amino acids, proteins and nucleic acids.
Thus, N uptake is highly integrated with the availability of
sugars (Ruffel et al. 2014). In contrast, N-deficiency negatively
affects photosynthetic output, which can be recovered by N
re-supply (Coruzzi and Bush 2001). On the other hand, the
assimilation of NO3

� is a highly energy-consuming process
(Bloom 2015). Thus, increasing C supply promotes NO3

–

uptake and assimilation and vice versa (Cross et al. 2006;
Weigelt et al. 2009; Schofield et al. 2009). The C :N ratio also
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affects NO3
– root-to-shoot transportation. For example, under

low soil NO3
– level, root C : N ratio is high, which creates a

condition to assimilate most of the NO3
– into amino acid for

synthesising proteins in the root, thereby stimulating root growth
and the initiation of lateral roots (LR), but with little NO3

–

delivered to the shoot (Zheng 2009). As soil NO3
– increases or

root C reduces, unassimilated NO3
– could be transported to the

shoot throughxylem, stimulating shoot growth (Takei et al.2001,
2002). Similarly, high leaf N promotes shoot development and
its sink strength. Under this scenario, the photosynthetic C tends
to be retained in the shoot with less C exported to roots. In
contrast, low leaf N limits shoot growth andmore C is likely to be
translocated to the root (Bloom et al. 1993). The exact NO3

– level
and root C : N ratio below or above which plant growth may be
affected vary from species to species since different species have
different normal C :N ratio. For example, the root C : N ratio of
canola, mustard and wheat is ~44, which is higher than chickpea
and pea with their root C : N ratio being 33 and 18 respectively
(Gan et al. 2011). The low C :N ratio of the latter two legume
species may reflect their ability of N2-fixation. Interestingly,
survey from three oilseed, three pulse crops and spring wheat
revealed that rootC : N ratio ranged from17 to 75, higher than that
in straw (shoot) of 14–55 and seed of 6–17 (Gan et al. 2011).

At themolecular level, thebalance betweenCandNaffects the
expression of more than half of Arabidopsis genes (Palenchar
et al. 2004; Gutiérrez et al. 2007), indicating a sophisticated C :N
response network. Research in Arabidopsis roots has identified
three candidateswhichprobably sense and respond toC :Nstatus.
A putative glutamate receptor AtGLR1.1 was first reported as
a sensor of intracellular Suc and NO3

– status in Arabidopsis.
This proposition was based on the following observations: (i)
AtGLR1.1-deficient (antiArGLR1.1) seed failed to germination in
the presence of Suc, but not Glc, mannitol or sorbitol, while the
germination could be restored upon co-incubationwithNO3

–, but
notNH4

+; (ii) theantiArGLR1.1 seedlings exhibited a conditional
phenotype that was sensitive to the C :N ratio (Kang and Turano
2003). Moreover, a putative methyltransferase AtOSU1 was
identified as a critical modulator in balancing C and N nutrient
response inArabidopsis (Gao et al.2008).TheAtosu1mutantwas
more sensitive than the wild type to both low C/high N and high
C/low N conditions, of which the AtOSU1 mutation strongly
upregulated the expression ofAsn synthetase isoform 1 (AtASN1)
andMYB75 transcription factor in response to low C/high N and
high C/low N respectively (Gao et al. 2008).

The nitrate transporter AtNRT2.1 was also proposed to
act either as a high C/low N sensor or signal transducer to co-
ordinate the development of the root systemwith nutritional cues
(Little et al. 2005). Several molecular components have been
identified to regulate AtNRT2.1 expression. A dual affinity NO3

�

transporter AtNTR1.1 was shown to act as a NO3
� transceptor

(transporter/sensor, Gojon A et al. 2011), required for both local
induction (short term)and repression (long term)of ahigh-affinity
nitrate transporter geneAtNRT2.1 (Muñoset al.2004;Krouk et al.
2006; Ho et al. 2009). The phosphorylation of AtNRT1.1 by
CBL-interacting protein kinase AtCIPK23 switches AtNRT1.1
to the high-affinity function leading to a weak induction of
AtNRT2.1 (Ho et al. 2009; Parker and Newstead 2014; Sun
et al. 2014). Another CBL-interacting protein kinase AtCIPK8
(Hu et al. 2009) and a putative transcription factor NIN-Like

Protein 7 (AtNLP7, Castaings et al. 2009; Marchive et al. 2013)
were also found to be involved in the induction of AtNRT2.1
expression by NO3

�. In addition, Arabidopsis high nitrogen-
insensitive 9 (AtHNI9)/ INTERACTWITH SPT6 (AtIWS1), an
evolutionarily-conserved component of the RNA polymerase II
complex, acts in roots to repress AtNRT2.1 transcription
in response to high N supply (Girin et al. 2010; Widiez et al.
2011). Furthermore, the transcription factors AtLBD37/38/39
seem to mimic the effect of organic N compounds at high N
status, and act as a long-distance N signalling to downregulate
nitrate transport AtNTR2.1 (Rubin et al. 2009). These findings
indicate a mechanism of managing whole-plant level NO3

� (for
recent reviews see Krapp et al. 2014; Ruffel et al. 2014; Bloom
2015; Krapp 2015).

de Jong and co-workers (2014) demonstrated in Arabidopsis
that Glc is coupled to nitrate uptake and assimilation through
hexose kinase1(HXK1)-mediated oxidative pentose phosphate
pathway (OPPP). The interaction regulates the expression and
activity of NO3

– transporter NRT2.1 from transcriptional to post-
translational levels. Reda (2015) reported Suc signalling from
shoot enhances the nitrate reductase (NR) activity in Arabidopsis
root by inducing NIA genes (encoding NR) expression and NR
activation state, and probably through an HXK1-independent
pathway.

Regulatory proteins and hormonal pathways involved
in balancing shoot–root C :N status

Along with the root-shoot-root N–C signal circuit as outlined
above, other signalling components are also involved in
modulating C and N metabolism and allocation. To this end,
SnRK1 (SNF1-related protein kinase-1) is a plant protein kinase
activated by low levels of Glc, but inhibited by glucose
6-phosphate, trehalose-6-phosphate and Suc (Toroser et al.
2000; Halford et al. 2003; Zhang et al. 2009; Ruan 2014). In
addition to participating carbon allocation by modulation
gene expression of Sus, ADP glucose pyrophosphorylase
(AGPase) and a-amylase (Laurie et al. 2003; McKibbin et al.
2006), SnRK1-mediated signalling was also revealed to regulate
nitrogen assimilation and amino acid biosynthesis through
phosphorylation and inactivation of NR, and regulation of
asparagine synthase gene expression (Baena-González et al.
2007). These findings indicate the potential role of SnRK1 in
C–N balancing.

Plant 14-3-3 proteins could also act as regulators of carbon and
nitrogen metabolism through direct interaction with many
essential enzymes such as the plasma membrane H+-ATPase,
sucrose phosphate synthase, ADP-glucose pyrophosphorylase,
NR, and glutamine synthase (Chung et al. 1999) and their overall
control over the TCA cycle (Diaz et al. 2011). Overexpression
of 14-3-3 protein in Arabidopsis results in hypersensitity to C–N
stress conditions, which could further be aggravated by the
absence of its upstream regulator ubiquitin ligases ATL31
(Sato et al. 2011). The observations suggest that ATL31
regulates C–N response by degrading the 14-3-3 proteins.
Finally, Dof1 (DNA binding with one finger), a gene
expression activator for organic acid metabolism, has been
shown to improve N assimilation under low-nitrogen condition
in Arabidopsis. Overexpression of Dof1 was accompanied with
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reduced Glc level and increased gene expressions responsible
for carbon-skeleton production, required for amino acid
biosynthesis (Yanagisawa et al. 2004). Similarly, introduction
of a maize orthologue, ZmDof1, into rice also enhanced N and C
assimilations under N-deficiency (Kurai et al. 2011). Together, a
root–shoot-root signal circuit in sensing C–N status is equipped
with a cohort of regulatory proteins to achieve C–N balancing at
the whole-plant level (Fig. 1).

In parallel to regulatory proteins involved, plants also recruit
hormone signals for root–shoot communications with respect of
C–Nstatus. Root cytokinkins (CKs), for example, are transported
acropetally in the xylem sap to increase the expression of N-
uptake/assimilation genes in both shoot and root, and to promote
lateral root (LR) development (Takei et al. 2001; Kiba et al.
2011).Reciprocally, the supply ofNO3

– inducesCKbiosynthesis
(Kiba et al. 2011). The synergistic NO3

–-CK relay provides a
positive feedback system contributing to N uptake and
assimilation (Ruffel et al. 2011) and allows the root to actively
‘forage’ soil NO3

– by increasing lateral root formation in
N-limited conditions (Ruffel et al. 2011). We note that CK
deficiency in the Arabidopsis cytokinin oxidase (CKX)
overexpressing plants leads to high root to shoot ratio, largely
owing to stunted shoot growth with enhanced root system, a
phenomenon probably reflecting a shift of carbon allocation from
shoot to root (Werner et al. 2003, 2008). The findings suggest
a linkage between N–CK and C–N loop under N-limitation
condition: CK-deficiency signal may trigger more C allocated
from shoot to root whereby promoting root growth. The N–CK
positive feedback loop then kicks in to strengthen root N uptake
and assimilation, and to induce CK biosynthesis. The increased
CK, once translocated to the shoot, could shift root-over-shoot
growth back to a balanced shoot–root development (Fig. 1).

Similar to CK, auxin also exerts sophisticate interactions
with both N and sugar signalling pathways (Ljung et al.
2015). Auxin was found to be a positive regulator for NO3

–

accumulation in leaves. Treatment with exogenous auxin or
introduction of the auxin overproducing mutation in Arabidopsis

resulted in a strong increase in the transcription of AtNRT1.1, a
dual-affinity NO3

– transporter/sensor, in root tips (Guo et al.
2002). N-deficiency trends to trigger auxin translocated from
shoot to root (Caba et al. 2000; Krouk et al. 2010), which could
promote root growth and LR formation (Giehl and von Wirén
2014). Further, AtNRT1.1 not only transports NO3

– but also
facilitates auxin translocation from shoot to root when
Arabidopsis seedlings were grown in medium containing less
than 0.2mM NO3

– (Krouk et al. 2010). Together with strong
upregulation of IAA biosynthesis by soluble sugars (LeClere
et al. 2010; Lilley et al. 2012; Sairanen et al. 2012), the basipetal
allocation of auxin probably function as a shoot-to-root feedback
signal to stimulate root development under low N condition in
accompany with C flow from shoots (Fig. 1). Further addition
to the shoot-root bio-directional C–N signalling loop comes
from the recently identified xylem signalling peptides
C-TERMINALLY ENCODED PEPTIDE (CEP) and their
receptor protein CLAVATAV (CLV) in phloem. Tabata et al.
(2014) identified two CEP1 receptors in Arabidopsis, XIP1/
CEPR1 and CEPR2. Application of CEP1 peptides into roots
resulted in upregulation ofNRT2.1, in a shoot CEPRs-dependent
manner. The findings suggest a root–shoot-root CEP/CLV
signalling pathway in promoting N uptake. Together, a multi-
layer global signalling circuit appears to have been employed
by plants to balance C–N status and co-ordinate root–shoot
development (Fig. 1).

Concluding Remarks

Significant progress has been made over the last several decades
on roles of C allocation and sugar signalling in shoot-root
communication and development. Plants have clearly evolved
sophisticated mechanisms to manage the allocation of C, N and
other nutrients between shoot and root through sugar signalling
and other interacting pathways. The advances in genomic and
molecular tools including large scale data analyses have provided
great opportunities to study the systemic sugar signalling network
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along with the roles of sugars as building blocks and energy
resource. Among various challenges, tracing the spatial-temporal
changes of sugars at the cellular and subcellular levels remains
essential for better understating shoot-root communication. New
technologies such as biosensors andmagnetic resonance imaging
(MRI) have opened up newwindows to tackle this challenge. The
former are genetically encoded fluorescent protein-based sensors
for ion and metabolites including Suc and Glc, allowing in vivo
visualisation of the spatial and temporal dynamics of sugars
and other small molecules at the cellular and subcellular levels
(e.g. Jones et al. 2013). The MRI permits non-destructive
monitoring of sap flow through phloem and xylem at the
whole-plant level (e.g. Windt et al. 2009). Application of these
techniques together with other molecular and analytical tools
will undoubtedly deepen and broaden our understanding on roles
of sugars in co-ordinating shoot–root nutrient allocation and
development.
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