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ABSTRACT

Grain yield improvement in globally important staple crops is critical in the coming decades if
production is to keep pace with growing demand; so there is increasing interest in understanding
and manipulating plant growth and developmental traits for better crop productivity. However, this
is confounded by complex cross-scale feedback regulations and a limited ability to evaluate the
consequences of manipulation on crop production. Plant/crop modelling could hold the key to
deepening our understanding of dynamic trait–crop–environment interactions and predictive
capabilities for supporting genetic manipulation. Using photosynthesis and crop growth as an
example, this review summarises past and present experimental and modelling work, bringing about
a model-guided crop improvement thrust, encompassing research into: (1) advancing cross-scale
plant/crop modelling that connects across biological scales of organisation using a trait dissection–
integration modelling principle; (2) improving the reliability of predicted molecular–trait–crop–
environment system dynamics with experimental validation; and (3) innovative model application
in synergy with cross-scale experimentation to evaluate G × M × E and predict yield outcomes of
genetic intervention (or lack of it) for strategising further molecular and breeding efforts. The
possible future roles of cross-scale plant/crop modelling in maximising crop improvement are
discussed.

Keywords: APSIM, crop dynamics, cross-scale modelling, G × M × E, genetic engineering,
photosynthesis, plant/crop physiology, trait dissection, yield improvement.

Introduction

Genetic improvements in crop yield performance through cycles of selective breeding have 
contributed to year-on-year increases in grain yield per land area for major cereals. 
However, current approaches are unlikely to meet the increasing demand from a growing 
human population, shifts in diet, and the use of crops for fuel production (Ray et al. 2013). 
This serious deficit will occur amid the negative impacts of climate change on crop yield 
(Lobell et al. 2015). There is growing interest in using our wealth of fundamental 
understanding of plant growth and development mechanisms and processes to devise yield 
enhancement strategies. The dominant approach focuses on deepening molecular and 
pathway understanding and manipulation of aspects of plant growth and development, 
which are often then extrapolated to seasonal crop yield performance. For example, this 
has led to the common perception that demonstrating enhancement in instantaneous leaf 
CO2 assimilation rate would simply translate to increased plant/crop biomass growth, 
therefore increasing yield at harvest (Long et al. 2015; Simkin et al. 2019). While such a 
‘bottom-up’ appraisal of genetic manipulation is attractive, interactions of emerging traits at 
the plant/crop-scale with the environment could feedback on the performance of processes 
at smaller scales, which can complicate crop performance assessment (Wu et al. 2016). 

Field crop experiments show that if increased crop biomass growth is at the expense of 
increased transpiration and faster depletion of soil water, such growth can increase 
terminal (flowering–grain filling period) water stress and reduce final grain yield 
(Herwaarden et al. 1998). Theoretical analysis predicts that faster biomass accumulation 
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and more water use are disadvantageous in water-limited 
conditions (van Oosterom et al. 2021). An extensive survey 
of free-air CO2 enrichment studies have found that nitrogen 
deficiency diminishes yield benefit of elevated CO2-induced 
photosynthesis and growth (Ainsworth and Long 2021). 
Theoretical analysis also predicts that molecular enhancement 
of photosynthesis diminishes at higher biological scales of 
organisation, and fails to increase yield if N accumulation is 
not also increased (Sinclair et al. 2004, 2019). These cross-scale 
feedback regulations are often not considered in molecular mani-
pulation studies and can confound yield improvement efforts. 

A method is to conduct empirical phenotypic assessment, 
which typically measure final crop yield per land area of 
plant genotypes. This is routinely applied in plant-breeding 
operations to inform genotype ranking and selection (Hammer 
et al. 2019a). This ideally requires yield information from 
across all land areas intended for crop production, over many 
years. Location × year combinations make up the target popula-
tion of environments (TPEs) (Chenu et al. 2011). In practice, 
researchers and plant breeders estimate crop performance 
using multi-environment trials (METs) and managed stress 
environments (MSEs) based on sampling of the TPEs. The 
same empirical assessment approach can be followed for 
mechanism- and process-based crop improvement. In a remark-
able effort over some 20 years of molecular breeding, 
Simmons et al. (2021) created a vast number of maize genotypes 
with genetic perturbations in growth and development 
processes, measuring the yield outcomes of the transgenics 
using METs and MSEs and synthesising important lessons 
for decision making in molecular breeding. 

However, METs and MSEs are inherently large scale and 
costly, which poses a significant challenge in testing an ever-
growing number of transgenic materials. While transgenic 
testing has largely been confined to pot experiments (Simkin 
et al. 2019), there have been some examples of field testing of 
photosynthetic manipulations. For instance, a transgenic 
tobacco (Nicotiana tabacum) plants altered in the glycolate 
metabolism pathway reported biomass increase of >40% 
(South et al. 2019). However, this increase could not be 
explained by the reported advantages in canopy photosynthesis, 
which was generally less than 10%. As pointed out in the eLetter 
by Tony Fisher, Richard Richards, and Victor Sadras in response 
to the work, the faster growth of transgenic plants was likely 
biased from advantages in light interception due to non-
standard planting configuration – factors beyond intrinsic 
leaf photosynthetic enhancement. Another study of soy 
beans (Glycine max) tested transgenic plants, using hastened 
leaf non-photochemical quenching relaxation in the field and 
found that grain yield increased by up to 33% (De Souza et al. 
2022). However, in a subsequent field trial, against expecta-
tions no yield change was observed. These results confound 
crop improvement decision making and highlight the need for 
improved field-testing standards to validate the understanding 
of the relationship between underlying mechanisms and 

processes with crop-scale performance and demonstrate the 
benefits of genetic engineering on crop yield. 

It has been broadly proposed to use plant/crop models to 
predict the yield outcomes of trait manipulation to inform 
molecular breeding (Evans and Lawson 2020; Furbank et al. 
2020; Paul et al. 2020; Roell and Zurbriggen 2020; Zhu 
et al. 2020). Coupled with advances in our knowledge of 
complex networks of component traits that underpin crop 
yield and the development of a multitude of crop-growth 
models (CGMs) with origins dating back to the 1960s and 
1970s (Jones et al. 2017; Hammer et al. 2019b), our ability 
to predict crop performance has advanced significantly. 
CGMs typically model macroscale traits (e.g. crop resource 
capture, conversion, and partitioning) as exemplified by 
classic textbooks such as Physiological Determinants of Crop 
Growth by Charles-Edwards et al. (1986); Crop Ecology by 
Connor, Loomis, and Cassman; and the broader crop 
science literature (e.g. Hammer et al. 2019b). These authors 
consider plant growth and development at organ–plant–crop 
spatial scales on a per unit ground basis, and timescales from 
hourly to daily to seasonal. Model formulation is based on 
crop ecophysiological insights. Daily crop biomass growth 
per unit ground, for example, is linearly related to the solar 
radiation intercepted by the canopy in water and N non-
limiting conditions; the slope of the relationship is radiation 
use efficiency (RUE) (Sinclair and Muchow 1999). Crop yield 
per land area is in fact a complex function of the genetic/ 
biology (G) of component traits, agronomic management of 
the plants as field crops  (M),  andweather  and soil  environments  
(E). CGMs have reached sufficient maturity with proven 
ability in predicting emergent consequences of G × M × E 
and crop yield outcomes, and their value for crop improvement 
decision making is recognised by researchers, plant breeders, 
and agronomists (Hammer et al. 2019a, 2019b). But are CGMs 
the means to fulfil the widening phenotypic assessment gap as 
we pursue mechanism- and process-based crop improvement? 

A barrier to using organ–plant–crop-scale CGMs to predict 
the effect of bioengineering is that model parameters and 
equations may not have clear links to molecular and pathway 
manipulations. For example, the RUE (a crop-scale trait 
underpinned by the collective photosynthetic CO2 assimilation 
capacity of all leaves in the canopy and the efficiency of dry-
matter synthesis from assimilated carbon) cannot be easily 
determined a priori  to simulate such factors as changes in 
the leaf CO2 assimilation rate arising from manipulation of 
Rubisco catalytic properties (e.g. Salesse-Smith et al. 2018). 
Plant modelling at molecular and pathway scales can 
provide the ability to model specific enzymatic manipulations 
(Zhu et al. 2013). Models with greater molecular details are 
perceived as more realistic and are often more appealing to 
fundamental plant experimentalists (Kromdijk et al. 2016; 
South et al. 2019). But the trade-off in using these models 
is that their predictive capabilities are largely limited to 
molecular and pathway scales, and typical timescales of 
sub-seconds to minutes. Without spatial–temporal upscaling, 
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molecular models do not have the means to capture the 
organ–plant–crop-scale growth and development dynamics 
and G × M × E interactions necessary for crop yield prediction. 

Given the variety of plant/crop models that are available, 
how can we best use them to support plant-science research 
and crop-improvement decision-making? It is clear that we 
need models to adequately capture both (1) bioengineering 
effects at lower biological scales, and (2) crop ecophysiological 
knowledge for predicting crop growth and development 
dynamics, G × M × E interactions, and yield across TPEs. 
Given the amount of photosynthesis research globally and 
its role in crop biomass and yield growth, I now discuss a 
model-enabled strategy using photosynthesis and crop yield 
as a case study, but the approach is general for all plant 
traits. Specifically I will: 

� survey plant/crop modelling at multiple scales of biological 
organisation, and their utilities and limitations; 

� describe an emerging model-guided crop improvement 
strategy and its benefits for genetic engineering and 
breeding selection; and 

� discuss opportunities related to advancing plant/crop 
modelling and crop improvement. 

Trait–crop–environment modelling at
multiple scales of biological organisation and
utility

The process of mathematically modelling plant data/ 
information is arguably becoming a plant-science research 
topic in its own right. Modelling is the most effective means 
for developing a holistic understanding of the networks of 
interacting mechanisms and processes drawing from a wide 
range of research areas; providing the means to study the 
dynamics of these systems, which may be difficult to grasp 

with experiments. These make modelling more than an 
exercise in hindsight: it can work synergistically with plant 
science discovery. Naturally, modelling approaches that focus 
on specific biological questions emphasise particular aspects 
of plant/crop biology, using their own scales, biological 
variables, and abstractions, leading to divergent model structures 
and parameterisations. Using photosynthesis, plant growth, 
and yield as an example, categories of modelling thrusts at 
different biological scales of organisation are presented (Fig. 1). 
Their potential (or lack of it) for supporting photosynthesis and 
crop yield improvement are now discussed. 

Molecular and biochemical models of
photosynthesis

Photosynthesis is the primary process that drives plant and 
crop growth, which involves a large number of enzymes and 
metabolites, and is one of the most well studied traits. Our 
knowledge of photosynthesis has been captured in the three 
types of photosynthesis models: (1) molecular pathway 
models (metabolic models), which explicitly include many 
enzymes and metabolites of the Calvin–Benson cycle, and 
the electron transport chain by using systems of differential 
equations (e.g. Laisk et al. 2006; Zhu et al. 2013; Bellasio 
2019); (2) the coarse-grained biochemical models of steady-
state photosynthesis, which elegantly reduces the many 
photosynthetic steps to the carboxylation- and electron transport-
limited states, controlled by the catalytical properties of Rubisco 
via Michaelis–Menten kinetics and electron transport chain 
(Farquhar et al. 1980; von Caemmerer and Furbank 1999); 
and (3) empirical models of steady-state leaf photosynthetic 
CO2 and light response, using linear, hyperbolic, and expo-
nential equations (e.g. Thornley 1976). The degrees of 
coarse-graining and empiricism in the model influence the 
relationship between model parameters and intended 

Top-down modelling 
Crop growth models 

Detailed plant and canopy models 

Biochemical models 

Bottom-up modelling
Molecular pathway models 

Fig. 1. Plant/crop models and their emphasis on biological scales of organisation. The models are
discussed in the next subsection. The dashed arrows indicate major modelling principles to achieve
connections across biological scales of organisation. The triangles indicate the trade-offs between
connections with specific plant mechanisms and processes vs crop yield.
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enzymatic actions. These models cover the molecule–organ 
scales of biological organisation (Fig. 1). 

The biochemical models of steady-state leaf photosyn-
thesis are widely used to simulate leaf CO2 assimilation rates 
under various CO2, light, and temperature conditions. They 
require input of a few key photosynthetic parameters with 
biological meanings: maximum carboxylation (Vcmax) and 
maximum electron transport (Jmax) rates, Rubisco catalytic 
properties, the light–electron transport rate relationship, and 
the temperature response of those photosynthetic parameters 
(von Caemmerer 2000). Model parameter values for different 
species are becoming available (Bernacchi et al. 2002; Silva-
Pérez et al. 2017; Sonawane et al. 2017). The biochemical 
models can be used to infer changes in biochemical attributes, 
given measured photosynthetic CO2- and light-response 
curves (von Caemmerer and Farquhar 1981) and in transgenic 
plants (von Caemmerer 2000). The models can predict CO2-
and light-response curves with photosynthetic manipulation 
if the effects of genetic manipulation on model parameters 
can be a priori  determined (e.g. von Caemmerer 2000), but 
this may not be straightforward. Molecular pathway models 
with explicit links to enzymes could offer the means to 
predict, but using such models would require assumptions 
in equations and parameterisation of all modelled enzymes 
for CO2, light, and temperature, which is challenging to fully 
validate experimentally. Nonetheless, Kannan et al. (2019) 
calibrated a model of molecular pathways for simulating 
the effects of elevated plant growth CO2 on the steady-state 
leaf photosynthetic CO2 response curve; Zhao et al. (2021a) 
used similar models to predict the CO2 assimilation 
rate with changing individual enzymatic activity in the 
Calvin–Benson cycle. 

Detailed plant and canopy models

An intuitive approach for modelling aboveground canopy 
photosynthesis involves calculating the CO2 assimilation 
rate for every photosynthetic organ (predominantly leaves) 
within the volume of a canopy, which also requires canopy 
microclimate and photosynthetic attributes of the plant 
materials. This includes levels of light, CO2, and temperature, 
and vapour pressure deficit, canopy architecture, and any 
required parameters of the photosynthesis model used. Song 
et al. (2017) calculated the heterogeneity of one environ-
mental factor, light, by parameterising a 3D plant architecture 
model after measuring tiller number and leaf number, base 
height, length, width, angle, and curvature, and inferring leaf 
optical properties combined with ray-tracing algorithms. 
Such modelling of plant structure is commonly referred to 
as functional–structural plant modelling (Vos et al. 2010; 
Soualiou et al. 2021). The concept can be applied to leaf-
scale modelling (Earles et al. 2019). For the belowground, 
there are 3D modelling of root system architecture and 
solute (water and nutrient) transport in the soil such as 
OpenSimRoot (Postma et al. 2017). In the aboveground 

canopy, modelling of environmental factors other than light 
in such detail remains to be seen. Validating 3D model outputs 
by measuring the photosynthetic rates of every photosynthetic 
organ is not feasible; a common practice is to test predicted 
whole-canopy CO2 uptake rates against canopy-scale gas-
exchange chamber measurement (Song et al. 2016; Chang 
et al. 2022). 

Combining molecular pathway models with a detailed 
canopy upscaling approach presents a means for highly 
detailed canopy modelling that can explicitly simulate the 
effects of photosynthetic bioengineering on canopy CO2 uptake 
rates. Model parameterisation and perhaps simulation run-
time can be challenging, and in some circumstances model 
simplification was made by switching to biochemical and 
empirical models of leaf photosynthesis (Song et al. 2017; 
Chang et al. 2022). While the capacity to simulate the 
entire crop cycle is theoretically sound, the requirement to 
predict 3D canopy architecture (including time-series plant 
architectural, leaf morphological, and physiological attributes, 
and parameterisation of all photosynthetic model parameters) 
and canopy micro-environment remain major barriers. 

A greater number of upscaling techniques have been 
explored for the coarse-grained biochemical and empirical 
models of leaf photosynthesis. More abstract upscaling 
approaches such as the big-leaf and sun-shade (single or 
multiple layers) models (Hikosaka et al. 2016) use pre-defined 
angle of leaf surfaces relative to the angle of incoming solar 
radiation. This provides a simple means for simulating 
realistic light intensities intercepted by different layers of 
the canopy, without incorporating explicit 3D canopy models 
or inputting plant organ morphological features (Duncan et al. 
1967). Complexity is further reduced by grouping leaf surface 
areas into a small number of entities, allowing calculation of 
their averaged light interception, temperature, leaf nitrogen, 
photosynthetic parameter values, and CO2 assimilation rates. 

There is, however, a balance between the simplification 
and reliability of a model. Sun-shade models are more complex 
than big-leaf models, which assumes the canopy is a slab of 
photosynthetic medium; but sun-shade models are more reliable 
because grouping leaf surfaces in a canopy into either sunlit or 
shaded fractions accounts for most within-canopy light 
heterogeneity without relying on empirical corrections 
(de Pury and Farquhar 1997). Sun-shade modelling has been 
shown to accurately predict canopy CO2 assimilation rates 
measured at various incoming light intensities in the field 
(de Pury and Farquhar 1997). The approach is widely used 
for upscaling to canopy photosynthesis and much of sun-
shade modelling papers reference studies by de Pury and 
Farquhar (1997) and Leuning et al. (1998). Wu et al. (2018) 
used a sun-shade canopy modelling approach to predict the 
effects of photosynthetic manipulation on canopy-scale CO2 
assimilation and biomass growth rates. Abstract upscaling 
approaches capture canopy architecture and leaf morphology 
effects on canopy CO2 assimilation rates, using the aggregated 
parameters that describes light extinction through the 
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canopy; but parameterisation is challenging due to our lack of 
knowledge of how specific architectural and morphological 
traits can affect the aggregated parameters. However, a spherical 
leaf angle distribution approximation is typically sufficient for 
field-crop canopies due to their relative heterogeneity (de 
Pury and Farquhar 1997). Current detailed plant and canopy 
models operating in isolation cannot predict crop-scale 
outcomes, since such models cannot simulate the dynamics 
of crop growth and development. For example, total leaf 
area per ground area (the leaf area index) changes over a crop 
cycle, but needs to be prescribed to allow canopy photosyn-
thesis calculations. Most detailed plant and canopy models 
cover scales of biological organisation from pathway to 
(static) plant/canopy (Fig. 1). 

Crop growth models

Crop growth and development are the two major deter-
minants influencing yield performance. Growth is the daily 
aboveground biomass increment considered on a per ground 
area basis, and accumulation of dry matter in leaves, stems, 
roots, and grains; plant/crop development concerns the timing 
of the formation of new leaves, tillers, roots, flowering, and 
grains. Grain yield is a complex emergent property of growth 
and development dynamics, agronomic management, and 
environment (soil and weather). These soil–crop–environment 
ecophysiological insights have been incorporated into crop 
physiological determinant networks (including environmental 
factors, traits, and biological input parameters) that underpin 
CGMs such as those in Agricultural Production System 
sIMulator (APSIM) and Decision Support System for 
Agrotechnology Transfer (DSSAT) platforms (Holzworth et al. 
2014; Jones et al. 2017). Fig. 2 showcases the networks of the 
APSIM–sorghum crop model. Typical CGMs link the organ– 
crop scales of biological organisation (Fig. 1). 

Modelling of plant/crop developmental rate in CGMs 
typically uses a thermal time approach factoring in the growth 
temperature and photoperiod (Hammer et al. 2010). Actual 
growth rate in N abundant conditions is the minimum of 
either the potential growth rate when water is not limiting 
and the water-limited rate. The potential rate is calculated 
by the RUE equation where canopy-intercepted radiation is 
the driver (described above). This also establishes crop water 
demand by dividing the accumulated biomass by the crop’s 
transpiration efficiency (TE, g biomass kg–1 water). RUE 
and leaf area expansion are reduced by low specific leaf N 
(SLN, g N m –2 leaf) when N is limited. The SLN is predicted 
using a crop N dynamics network in leading models such as 
the APSIM–sorghum crop model (Fig. 2b). If water demand 
is not met by the uptake of soil water by the roots (supply), 
water-limited growth rate calculated by multiplying the 
reduced water supply and the TE. Together the RUE and TE 
equations capture the efficiency with which a canopy 
produces biomass from intercepted radiation and allowable 
transpiration. Biomass accumulation in plant organs (leaf, 

stem, grains, roots) is determined by development-stage-
sensitive partitioning rules and the supply and demand of C 
by the growing organs, and is modulated by N and water 
stress. Grain number is determined by crop biomass at anthesis; 
grain size increase is fuelled by biomass growth during the 
grain-filling period, C translocation, and is modulated by 
N. Crop nitrogen dynamics – involving leaf, stem, and grains – 
follow the supply–demand in the biomass growth modelling 
described above (Fig. 2b). 

CGM has been widely used to interpret and predict 
the seasonal dynamics of soil–crop–environment systems, 
G × M × E interactions, and crop yield. They help to 
improve the interpretation of empirical yield information via 
dissection and explanation of yield in relation to the under-
lying physiological networks of component traits (Fig. 2). 
The interpretative nature of the APSIM–sorghum crop model 
helped to explain that the well-documented sorghum stay-
green phenotype – the ability to retain green leaf area 
late in the crop cycle, benefiting yield in drought-prone 
environments – is mainly ascribed to seasonal timescale shifts 
in water use patterns toward the reproductive phase of the 
crop (Hammer et al. 2019b). Progress in maize (Zea mays) 
drought tolerance improvement had been aided by crop 
modelling, which revealed that the rate and patterns of water 
use during crop growth and development were important 
components, contributing to the higher yield of some maize 
hybrids under important field drought conditions within the 
TPE (Cooper et al. 2014a; Hammer et al. 2019a). The 
predictive potential of CGMs set up the capacity to simulate 
seasonal crop dynamics, G × M × E interactions, and the 
consequences of component traits on grain yield across the 
TPEs, which is valuable for identifying phenotyping strategy 
and supporting breeding selection (Cooper et al. 2014a; van 
Oosterom et al. 2021). 

Contextualising model utilities and limitations

Mathematical models that represent our understanding of 
actual biological systems have emerged at many scales of 
biological organisation (Fig. 1), but the phenotypic prediction 
capabilities necessary for facilitating mechanism- and 
process-based crop improvement are beyond any one model 
can offer. The modelling approach that enables connections 
across biological scales of organisation have emerged as a 
natural solution to address the prediction gap, and are now 
at the frontier of plant/crop modelling (Wu et al. 2016; 
Chew et al. 2017; Marshall-Colon et al. 2017; Xiao et al. 
2017; Yin et al. 2018; Hammer et al. 2019a; Zhu et al. 
2022). This can take the form of either (1) a bottom-up 
modelling approach, starting with molecules/pathways and 
progressive spatial and temporal upscaling, or (2) a top-down 
modelling approach, beginning with macroscale component 
traits and dissection of traits to their underpinning mechanisms 
and processes (Fig. 1). 
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(a) 
Environment/Inputs Radiation Temperature Photoperiod SLN VPD Rainfall Soil water 

Parameters Leaf appearance rate k Leaf initiation rate RUE TEc Root elong rate kl 

Phenology Flowering Leaf number Floral initiation Total leaf number Maturity 

Expansion Leaf area Senesced leaf area Water stress Root depth 

Resource_capture CHO partitioning Frac radn intercepted RUE_actua T demand TE_actual T supply 

Biomass CGR_actual CGR_radn CGR_water 

Grain set Biomass around anthesis Grain number 

Grain fill Grain N CHO translocation Biomass during grain filling 

Yield Grain size Grain yield 

(b) 
Environment/inputs CHO partitioning Grain number N fertiliser Soil N 

Parameters Minimum stem N% Critical SLN N demand per grain Root elong rate Max N uptake rate 

Expansion Stem mass Leaf area Senesced leaf area 

Resource_capture Stem N demand N uptake actual Leaf N demand N supply 

N biomass Stem N% SLN 

Grain set Grain N demand 

Grain fill N translocation 

Yield Grain N 

Fig. 2. (a) Crop growth and development and (b) crop nitrogen dynamic networks used in the Agricultural Production System sIMulator
(APSIM)–sorghum crop model. The blue and green boxes show connection points between (a) and (b). CGR, crop growth rate
(g biomass m−2 day−1); k, crop canopy light extinction coefficient; kl, soil water extraction decay constant’; RUE, radiation use efficiency
(g biomassMJ−1 intercepted solar energy); SLN, specific leaf nitrogen (gNm−2 leaf); TE, transpiration efficiency (g biomass kg−1 water); VPD,
vapour pressure deficit (kPa). Adapted from (Hammer et al. 2010) permitted by John Wiley and Sons (publisher).

The bottom-up approach typically aims for elaborate changes in morphological and architectural features. 
descriptions of plant/canopy morphology and architecture, Current method for reliably quantify time series canopy 
then adapt molecular pathway models to each part of the architectures is to rely on experimental measurements through-
simulated plant, resulting in a large number of input para- out the growth (e.g. Chang et al. 2022). Both spatial and 
meters that are needed to simulate all model mechanisms and temporal parameterisation requirements of bottom-up 
processes under each specific set of environmental conditions. models hinder prediction of seasonal timescale dynamics 
Extending bottom-up plant/canopy models temporally to of soil–crop–environment systems, G × M × E inter-
simulate growth dynamics requires parameterisation of actions, and crop yield. 
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In contrast, the emphasis in the top-down approach is to 
capture primary physiological-component traits to allow 
simulation of crop growth and development dynamics 
(Fig. 2). But the details of mechanisms and processes are 
typically traded off (Fig. 1). An example is the use of the 
RUE equation to simulate aboveground biomass growth to 
represent the molecular pathways underpinning leaf photosyn-
thesis and the 3D canopy architecture that influence canopy 
microclimate and leaf photosynthesis. The resulting lack of 
explicit links to molecular/enzymatic actions hinder use of 
top-down models to simulate molecular manipulation effects 
on crop performance. 

A modelling strategy put forward by Wu et al. (2016) and 
Hammer et al. (2019a) emphasises the need to combine 
modelling principles from both top-down and bottom-up 
perspectives for effective and efficient model development. 
Existing top-down frameworks at the organ–plant–crop 
scale with capacity for G × M × E and yield predict are 
useful foundations. But this means the frameworks need to 
readily accommodate variations in the representation of 
biological mechanisms and processes – capabilities that can 
be found in current CGMs such as those in the APSIM 
platform (Hammer et al. 2010, 2019b; Brown et al. 2014; 
Holzworth et al. 2014). An effective way of integrating 
models across biological scales of organisation is to follow a 
trait dissection principle that progressively incorporates 
biological complexities into the top-down frameworks by 

including elaborate models of mechanisms and processes at 
lower biological scales. These need to have structure and 
parameters with improved links to bioengineering targets, 
and from which model parameter values can be easily 
obtained via experimental or model simulation means to function 
in the top-down framework. Importantly such composite 
models would need to be evaluated for their phenotypic 
prediction performance. With these modelling ambitions, 
the following section describes principles for forming cross-
scale models (also referred to as multiscale or plant/crop 
systems modelling), trait–crop–environment system dynamics 
generated by cross-scale models, and how such models can be 
used to facilitate model-guided crop improvement. 

Prospects for model-guided crop
improvement strategies

With growing interest in mechanism- and process-driven crop 
improvement, how can we maximise translation of funda-
mental discovery science into more grain yield per land area? 
And where does this sit with ongoing selective breeding? Can 
plant/crop modelling unlock new integrated pathways for 
plant science and crop improvement? I now discuss such 
prospects by summarising past and present experimental 
and modelling work that jointly point to a model-guided 
framework for crop improvement (Fig. 3). Research topics 

Molecular 
breeding 

Component 

Dissect/Integrate 

Cross-scale Complex traits 
trait targets CGM improvement 

Predict/Evaluate 

Selective 
breeding 

Fig. 3. Model-guided crop improvement framework, defining the potential role of cross-scale
crop growth modelling (CGM) in unlocking new avenues for tapping into fundamental plant
science research and molecular breeding, and enhancing selective breeding (blue arrows).
Selective breeding has been supporting historical gains in complex traits, e.g. crop yield (green
solid arrow), but there are growing interests in using genetic engineering to improve crop yield
(green dashed arrow).
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can be grouped into three main areas. The first is modelling 
plants across multiple scales of biological organisation. This 
develops the plant/crop modelling science that connects 
molecular- and pathway-scale mechanisms and processes with 
the integrated crop scale; and adds biological details into 
organ–plant–crop-scale ecophysiology. The second is devel-
oping an understanding of time-series soil–crop–environment 
system dynamics through the predictive ability of plant/ 
crop models. Combining this with targeted experiments aids 
integrative understanding across scales of biological organisa-
tion and model validation. The third is applications of model-
guided crop improvement strategies for supporting genetic 
engineering and selective breeding efforts. 

Modelling of plant across biological scales of
organisation using cross-scale modelling
principles

As seen in the previous section, modelling can be at multiple 
scales of biological organisation (Fig. 1), and many models 
have matured sufficiently to adequately reflect the biological 
systems they set out to address. But do we have the necessary 
modelling tools for guiding translation of plant growth 
and development knowledge to crop yield improvement? 
Achieving this effectively and efficiently will be unlikely if 

models continue to evolve in silos. Cross-scale modelling 
principles first involve identifying a useful foundational 
framework of soil–crop–environment systems that reflect 
field crop production. This foundation should be capable of 
simulating dynamic plant/crop growth and development 
processes over a crop cycle to predict yields under given 
agronomic management and seasonal environmental conditions. 
The crop physiological determinant network used by the 
APSIM–sorghum growth model (Fig. 2) can serve as one 
such foundational framework. Additional mechanism and 
process models are then selected to replace elements of the 
network via a trait dissection approach and by ensuring the 
overall crop physiological determinant network remains as 
functional as the original models. 

This idea was explored in a cross-scale modelling study by 
Wu et al. (2016), who proposed the dissection of crop-scale 
biomass growth rates in both radiation- and water-limited 
situations into the biochemical processes of leaf photosyn-
thesis and stomatal conductance (Wu et al. 2018, 2019) 
(Fig. 4). This requires photosynthesis models to predict leaf 
CO2 assimilation rates according to light, CO2, and tempera-
ture conditions and canopy upscaling. Wu et al. (2019) found 
that upscaling coarse-grained biochemical models of steady-
state leaf photosynthesis with the relatively abstract sun-
shade canopy modelling was an effective and efficient strategy 

Fig. 4. An advanced cross-scale crop physiological determent network showing the two-way connections between mechanisms and
processes smaller and larger biological scales of organisation. Trait dissection expands biological details on the radiation- and water-
limited growth-rate component in the conventional crop growth and development network (the far-right image and expanded in Fig. 2)
to include processes in leaf photosynthesis, stomatal conductance, and a sun-shade canopy upscaling model. Component trait connection is
an important aspect of cross-scale modelling, here it involves upscaling of the leaf photosynthetic biochemistry to the crop scale through a
canopy model (left–right green arrows), as well as crop ecophysiological regulation on leaf- and canopy-scale photosynthesis and
transpiration (right–left blue arrows). The blue triangle indicates a reduction in SLN going down the canopy. The asterisked
component traits are linked to the conventional physiological determent network in Fig. 2. Environmental factors affect processes
throughout biological scales (grey arrows). Adapted from (Wu et al. 2019) under Springer Nature journal authors’ rights.
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for representing radiation- and water-limited growth rates. And 
such parsimonious models can be effectively integrated with 
crop growth and development dynamics for robust yield 
prediction with negligible changes in predicting performance 
(Wu et al. 2019). The alternative bottom-up canopy modelling 
approach has also generated models that upscale photosyn-
thesis with elaborate 3D canopy models to simulate the 
canopy CO2 assimilation rate (Wang et al. 2020); but using 
such models to simulate crop dynamics across a seasonal 
timescale remains challenging due to the need for accurate 
canopy architecture spatial and temporal parameterisation. 
Parsimonious plant/crop models contribute significantly to 
linking mechanisms and processes across biological scales 
(Yin and Struik 2017; Hammer et al. 2019a; Matthews 
et al. 2022). 

Trait dissection modelling concerns not just incorporation 
of elaborate mechanisms and processes into existing plant/ 
crop modelling frameworks: the science on how component 
traits are connected is also important if models are to realisti-
cally reflect soil–crop–environment systems. But this aspect 
of multiscale modelling is rarely detailed and often 
overshadowed by seeking to model elaborate molecular 
pathways and plant/canopy architecture. Wu et al. (2019) 
presents one of the few modelling studies to improve component 
trait connections, enabling simulation of crop growth, devel-
opment dynamics, and yield prediction across TPEs. For crop 
biomass growth, since leaf CO2 assimilation allows carbon 
gain, and biomass growth depends on photosynthesis of 
a whole canopy, modelling this involves the connection 
between leaf CO2 assimilation, respiration rates, and crop 
growth via modelling of canopy upscaling (Fig. 4). This 
aspect is common to all plant/crop models that aim to predict 
biomass growth. Canopy leaf area index (LAI, m2 leaf m –2 

ground) is an input to the canopy model, together with 
canopy architecture: both determine the available leaf area 
for photosynthesis and heterogeneous light on leaves 
throughout a canopy. Plants partition N into their leaves 
(Fig. 2b) and use it to synthesise photosynthetic machinery. 
Leaf N is represented as SLN and can vary depending on leaf 
position on the plant and the N requirements of competing 
organs. SLN is used to drive leaf photosynthetic parameters 
using the relationships between SLN, the maximum carboxy-
lation rate (Vcmax), and the maximum electron transport rate 
(Jmax) (Evans 1983, 1989; Silva-Pérez et al. 2020). 

On the water side, canopy transpiration demand arises 
from stomata on leaves that are open to allowing photosyn-
thesis; this needs a combination of the biochemical models 
of leaf photosynthesis and leaf-energy balance and transpira-
tion calculations, upscaled to canopy level (Wu et al. 2019). 
Crop water supply is determined by soil water content, root 
distribution in soil layers, and water extraction by roots. 
Actual biomass growth is driven by potential canopy CO2 
assimilation and modulated by water limitation, which 
restricts stomatal conductance and leaf photosynthesis 
(Fig. 4). These present a trait dissection–integration modelling 

principal used to connect component traits in advanced plant/ 
crop models (Wu et al. 2019). I now consider the effectiveness 
of this approach in capturing the complex biological system 
spanning multiple scales of biological organisation from 
leaf photosynthetic biochemistry to crop-scale growth. 

Evaluating reliability of predicted molecular–
trait–crop–environment system dynamics

Plant/crop modelling research is a fast-evolving plant-science 
topic, and the variety of tools, including those discussed 
earlier, can be overwhelming. How do we apprise model 
reliability? In discussing the credibility of models Hammer 
(2020) proposed three criteria. They must: (1) predict 
phenotypic outcomes for experiments with high-quality 
plant/crop data; (2) generate known quantitative responses 
to key factors that influence crop yield (solar radiation, CO2, 
temperature, water, N, crop maturity, and crop configuration); 
and (3) predict emergent phenotypes and interactions 
associated with key traits. Below I apply them on cross-
scale CGMs. 

High-quality data for analysing CGM credibility should 
contain key environmental drivers and crop attributes for 
yield determination. Nowadays environmental data can be 
automatically collected with a temporal resolution from 
minutes to days. Fig. 4e, f show daily incoming solar radiation 
and air vapour pressure deficit – the main environmental 
drivers of canopy photosynthesis/biomass growth and 
canopy transpiration (Fig. 2a). Many crop attributes can be 
measured from field experiments, but should consider data 
requirements for CGM validation, which can be guided by 
crop physiological determinant networks (Figs 2, 4). A number 
of first-order crop growth and development attributes impor-
tant for validating yield prediction are shown in Fig. 5a–d, g. 
This includes timeseries crop phenological stage, biomass 
(by plant organs) and yield growth, grain number and size, 
leaf number, canopy leaf area index, and the amount of 
N in plant organs. This field experiment was sown on 27 
November 1997 at Hermitage, Australia, with non-limiting 
water and N, using a sorghum genotype close to the elite 
commercial variety (Buster), and grown in solid configuration 
with plant density of 10 m−2 and row spacing of 0.5 m, 
representing intensive management of the environment 
(data: Hammer et al. 2010, sourced from the APSIMInitiative: 
https://tinyurl.com/mtcpuze6). Most of the attributes were 
collected on a per-ground-area basis for calculation of grain 
yield per land area. A unique quality of this high-quality 
dataset is time-series observations of the key field crop 
attributes, which is of great value for validating the capability 
of models in simulating growth and development dynamics 
over the crop cycle, and significantly deepens our understand-
ing of complex soil–crop–environment systems over time. 

Expanding model validation to assess key factors encoun-
tered by field crops can increase model robustness for a wider 
range of G × M × E conditions. This includes combinations of 
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Fig. 5. Predicted sorghum crop growth and development dynamics and high-quality field experiment data. Time
series of: (a) phenological stages and the time of flowering, indicated by the vertical dotted line; (b) growth of the
crop biomass, and leaf, stem, and grain components; (c) grain number and grain size (weight of 1000 grains);
(d) plant leaf number and canopy-leaf area indices; (e) daily incoming solar radiation and that intercepted by the
canopy, and detailed simulation of instantaneous photosynthetic CO2 assimilation with either the carboxylation
or electron-transport-limited state by the sunlit and shaded leaf fractions of the canopy, but aggregated to daily
results; (f ) observed daily representative vapour pressure deficit (VPD) and predicted transpiration demand and
supply of the sunlit and shaded leaf fractions (the empty and grey bars are filled indicating that all demand was met
in this case); (g) the amount of N in leaves, stems, and grains (per ground area basis); (h) observed final sorghum
yield across various solar radiation, temperature, water, and N conditions vs predicted yield using the standard
APSIM–sorghum model (Hammer et al. 2010); (i) predicted vs observed using the APSIM cross-scale sorghum
model (Wu et al. 2019). The diamond-shaped data point indicated by the arrow is the predicted yield outcomes
in (b). See text for details of experimental data. Daily representative VPD is calculated by subtracting the saturated
vapour pressure at daily minimum temperature from that of the daily maximum temperature, multiplied by a
correction factor of 0.75 (Lobell et al. 2015). (h) and (i) are reproduced from Wu et al. (2019), under Springer
Nature journal authors’ rights.

sowing location, sowing date (giving contrasting seasonal and crop management. But this requires considerable commit-
patterns of radiation and temperature), water and N treatments, ment in synergistic experimental–modelling research. The 
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APSIM Initiative (www.apsim.info) is a leading example of such 
enduring effort: its CGMs are leading the crop modelling space 
(Hammer et al. 2010; Brown et al. 2014; Holzworth et al. 
2014). The APSIM–sorghum crop model shows good perfor-
mance in predicting sorghum crop dynamics and yield 
across a wide range of experimental conditions (Fig. 5h; the 
APSIM–wheat crop model equivalent can be found in 
Brown et al. 2014). These experimental–modelling studies 
are foundational to model robustness in quantifying crop 
dynamic response to key environmental factors, and permit 
reliable outscaling of models to wider agricultural situations. 

Models need to predict crop dynamics and emergent 
phenotypes associated with perturbations in key crop impro-
vement traits for assessing genetic engineering. Wu et al. 
(2019) developed a state-of-the-art APSIM cross-scale modelling 
framework with which daily crop biomass growth rates are 
predicted by integrating (1) the two limiting states of 
photosynthesis and stomatal conductance at any instance, 
(2) the emergent consequence of collective photosynthetic 
CO2 assimilation and transpiration contributed by the sunlit 
and shaded leaf fractions of a canopy leaf area, and (3) 
crop growth and development dynamics (Fig. 4). Simulated 
biomass accumulation over the crop cycle agreed with the 
field data adequately (Fig. 5b), with good agreement between 
the observed time-series data for the key crop growth and 
development attributes (Fig. 5a–d, g). This supports the 
simulated photosynthesis data (Fig. 5e), despite the absence 
of field data equivalent. Wu et al. (2019) further showed 
that the cross-scale model can predict sorghum crop 
dynamics and yield across a wide range of experimental 
conditions (Fig. 5g; the wheat simulation equivalent is in 
Wu et al. 2019), making it the most extensively validated 
photosynthesis–plant–crop-scale CGM. 

Given our increased understanding of plant growth and 
development, CGMs are being increasingly sought for predicting 
crop-scale outcomes from manipulating plant growth and 
developmental traits. Photosynthetic enhancement is a research 
area that has integrated well with CGM use, generating 
predicted yield outcomes of biochemical/leaf-scale manipula-
tions (Yin and Struik 2017; Hammer et al. 2019a; Leakey et al. 
2019; Wu et al. 2019, 2023; Harbinson and Yin 2023). But 
how do we know that the models have got it right? Without 
actual data, the best approach requires painstaking analysis of 
model outputs through the biological scales of organisation to 
support results at the integrated scale. This can involve 
assessing the reliability of simulated leaf A–Ci, diurnal canopy 
photosynthesis, crop growth, and development dynamics 
over a crop cycle, across a range of production environments 
(more in the section below). This important aspect of plant/ 
crop modelling research is only beginning to be comprehen-
sively explored (Wu et al. 2019, 2023), which needs to be 
presented in future modelling studies. Beyond model simulation 
analysis, we need synergetic field experiments with transgenics 
that can generate improved cross-scale data (from molecular to 
whole-crop) to interrogate and validate model predictions. 

Model-guided genetic engineering: evaluating
molecular manipulation target

Despite the promises of genetic manipulation for crop yield 
improvement, there has not yet been a significant impro-
vement in yield. The major reason is that enhancements at 
lower biological scales of organisation often diminish with 
increasing biological scales (Sinclair et al. 2004; Wu et al. 
2018, 2023; Hammer et al. 2019a). Experimental evidence 
related to major strategies of photosynthetic manipulation 
and their consequences on plant/crop performance is mostly 
confined to the leaf- and single-plant scale (Table 1). Only a 
few studies have reported transgenic field experiments (e.g. 
South et al. 2019; De Souza et al. 2022), but until more 
robust field tests are carried out their asserted biomass and 
yield benefits remain speculative, hampering decision making 
for crop improvment. Cross-scale plant/crop modelling offers 
a means for a priori  probing of the effects of genetic 
manipulation across scales of biological organisation by 
predicting and evaluating molecular–trait–crop–environment 
dynamics and yield (Fig. 3). Table 1 summarises model 
predictions related to major strategies of photosynthetic 
manipulation and their consequences at the leaf, plant, 
and crop scales, providing insights into the likely yield 
enhancement or lack thereof for supporting molecular 
breeding efforts (Fig. 6a). 

One intriguing finding from comparing predictions from 
different work is that predicted enhancement (or lack of it) 
at leaf, canopy, and crop scales varies dramatically (Table 1). 
This can confound the decision support aspirations of plant/ 
crop models. A key issue is that simulated growth advantage 
and yield by some measure are often presented without 
adequate elaboration on photosynthesis–plant–crop dynamics 
for appraising the predicted results. This stresses the need for 
modelling studies to give greater weight to unpack predicted 
emergent phenotypes, crop dynamics, and feedback regulations 
between key traits and the environment. Wu et al. (2023) 
addressed this issue by comprehensive comparisons of changes 
across leaf, canopy, and crop scales, with and without 
introduction of parameter change representing photosynthetic 
manipulation. 

A seasonal sorghum crop simulation reported by Wu et al. 
(2023) is reviewed here with an informative comparison 
approach (Fig. 6). This analysis compares theorised effects 
of leaf photosynthetic enhancement by a combination of 
improved Rubisco catalytic properties, increased Riseke 
FeS, and mesophyll conductance. At the leaf scale A–Ci curve 
was predicted to increase; e.g. a 7% increase in leaf CO2 

assimilation rate at an ambient Ci, and high-light condition 
(Fig. 6b). Fig. 6c–h shows the baseline simulation of the 
dynamics of key crop-scale growth and development attributes, 
capturing effects of the leaf photosynthetic enhancement at the 
canopy/crop level. This simulation predicted that with the 
given leaf photosynthetic enhancement there would be no 
change to the developmental rate of sorghum plants over 
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Table 1. Summary of observed and predicted photosynthetic manipulation effects in C3 and C4 model/crop species across the different scales of
biological organisation.

Manipulation Leaf Canopy Crop Observed and predicted effects References
scale scale biomass/
effect effect yield effect

Carboxylation Enhanced Rubisco
catalytic properties

Exp. 15% – – Measured high-light leaf CO2 assimilation rate (Aleaf) in
Rubisco subunits and RUBISCO ASSEMBLY FACTOR 1 OE

Salesse-
Smith et al.

maize. (2018)

Model – −8% to
27%

– Predicted single-day canopy CO2 assimilation rate (Acanopy)
using a sun-shade canopy photosynthesis model combined

Zhu et al.
(2004)

with the biochemical model of C3 photosynthesis. Various
Rubisco sources with different Kc and specificity were
simulated.

15% 4% 0% to 4% Predicted ambient-Ci–high-light Aleaf in wheat using the
biochemical model of C3 photosynthesis (reflecting an A–Ci
curve with improved kccat and CE based on (Sharwood et al.
2016a) and (Sharwood et al. 2016b) and a + 20% Sc/o).
Predicted CO2 assimilation rate (A) by the collective sunlit
leaf area of the wheat canopy (Asunlit) on a sunny day.

Wu et al.
(2023)

Predicted wheat grain yield outcomes over 720 seasons in
dryland cropping situations across the whole of Australia
with realistic weather, soil and nitrogen input using a cross-
scale model.

1% 2% 1% to 3% Analogous to the above for C4 photosynthesis (reflecting an
A–Ci curve with improved +20% in Vcmax and Ko based on
(Salesse-Smith et al. 2018) and (von Caemmerer and Furbank

Wu et al.
(2023)

2016)), a sorghum canopy, and sorghum grain yield outcomes
over 480 seasons in dryland cropping situations across the
sorghum producing regions of Australia.

Reducing Exp. 30% – −30% to Measured ambient-Ci Aleaf in soybean with alternative South et al.
photorespiration 40% glycolate metabolism pathways. Field plant biomass were (2019)

from 2 years of experiment where plants were grown in a
four-by-four configuration surrounded by wide-type plants;
the variability was a result of different transgenic event.

Model 26% – 20% Predicted Aleaf loss at air CO2 of 350 ppm, predicted yield
increase with minimal photorespiration by assuming no O2 in

Walker
et al. (2016)

the air in the simulation using a multilayer canopy–soil–root
systems model.

30% – 5% Predicted ambient-Ci, high-light Aleaf in wheat using the
biochemical model of photosynthesis (reflecting a transgenic
plant A–Ci curve from South et al. 2019). Predicted average

Hammer
et al.
(2019a)

wheat grain yield outcomes over 120 seasons in dryland
cropping situations at Dalby, Australia across the whole
Australia with realistic weather, soil and abundant nitrogen
input using a cross-scale model.

CO2 delivery Increased mesophyll
conductance

Exp. n.s. – – Measured high-Ci, high-light Aleaf in Setaria viridis with
overexpressed plasma membrane intrinsic aquaporins and

Ermakova
et al. (2021)

higher mesophyll conductance

Model 5% – – Predicted ambient-Ci, high-light Aleaf in tobacco by doubling of
−2mesophyll conductance to 1 mol m s−1 bar−1.

Clarke et al.
(2022)

3% 2% 0% to 1% Predicted ambient-Ci, high-light Aleaf in wheat using the
biochemical model of C3 photosynthesis (reflecting an A–Ci
curve with +20% gm). Predicted Asunlit of the wheat canopy
on a sunny day. Predicted wheat grain yield outcomes over

Wu et al.
(2023)

720 seasons in dryland cropping situations across the whole
of Australia with realistic weather, soil and nitrogen input
using a cross-scale model.

(Continued on next page)
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Table 1. (Continued).

Manipulation Leaf
scale

Canopy
scale

Crop
biomass/

Observed and predicted effects References

effect effect yield effect

0% 0% 0% Analogous to the above for C4 photosynthesis (reflecting an
A–Ci curve with +20% gm), a sorghum canopy, and sorghum
grain yield outcomes over 480 seasons in dryland cropping

Wu et al.
(2023)

situations across the sorghum producing regions of Australia.

Cyanobacterial Exp. – – – – –

CO2 concentrating
mechanism

Model 60% – – Predicted high-light Aleaf using a detailed leaf scale CCM
model.

McGrath
and Long
(2014)

48% 27% 0% to 8% Predicted ambient-Ci, high-light Aleaf in wheat using a CCM Wu et al.
version of the biochemical model of C4 photosynthesis (see
Wu et al. (2023) for model parameterisation details).
Predicted Asunlit of the wheat canopy on a sunny day.

(2023)

Predicted wheat grain yield outcomes over 720 seasons in
dryland cropping situations across the whole of Australia
with realistic weather, soil and nitrogen input using a cross-
scale model.

C4 rice Exp. – – – – –

Model 250% 18% 37% Predicted high-light Aleaf in rice. Predicted Acanopy on a sunny
day. Predicted rice biomass with unlimited water and

Yin and
Struik

nitrogen using a whole-rice model. (2017)

Electron
transport

Enhanced electron
transport rate

Exp. 25% – – Measured high-light Aleaf in Rieske FeS OE Arabidopsis. Simkin et al.
(2017)

chain 8% – – Measured high-light Aleaf in Rieske FeS OE Setaria viridis. Ermakova
et al. (2019)

Model 12% 7% −3% to 2% Predicted ambient-Ci, high-light Aleaf in wheat using the Wu et al.
biochemical model of C3 photosynthesis (reflecting averaged (2023)
relative changes in model parameter values inferred from
changes in A–I curve observed by Simkin et al. (2017) and
Ermakova et al. 2019). Predicted Asunlit of the wheat canopy
on a sunny day. Predicted wheat grain yield outcomes over
720 seasons in dryland cropping situations across the whole
of Australia with realistic weather, soil and nitrogen input
using a cross-scale model.

5% 4% −1% to 3% Analogous to the above for C4 photosynthesis, a sorghum Wu et al.
canopy, and sorghum grain yield outcomes over 480 seasons (2023)
in dryland cropping situations across the sorghum producing
regions of Australia.

Extending Exp. – – – – –

photosynthetically
active radiation
wavelength

Model 10%
to
30%

– – Photosynthetic efficiency gain calculated based on (Chen and
Blankenship 2011)

Long et al.
(2015)

1% 5% −3% to 3% Predicted ambient-Ci, high-light Aleaf in wheat using the
biochemical model of C3 photosynthesis (reflecting an A–Ci
curve with +20% PAR). Predicted Asunlit of the wheat canopy

Wu et al.
(2023)

on a sunny day. Predicted wheat grain yield outcomes over
720 seasons in dryland cropping situations across the whole
of Australia with realistic weather, soil and nitrogen input
using a cross-scale model.

7% 9% −1% to 7% Analogous to the above for C4 photosynthesis, a sorghum Wu et al.
canopy, and sorghum grain yield outcomes over 480 seasons (2023)
in dryland cropping situations across the sorghum producing
regions of Australia.

(Continued on next page)
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Table 1. (Continued).

Manipulation Leaf
scale

Canopy
scale

Crop
biomass/

Observed and predicted effects References

effect effect yield effect

Fluctuating
photosynthesis

Accelerated
recovery from

Exp. – – 20% to 33%
or 0%

Field soybean yield of the three top performing transgenic
soybean lines from 2 years of experiment. First year results

De Souza
et al. (2022)

photoprotection were estimated from plants grown in individual rows, second
year results were from plants grown in plots with multiple
rows. Results were subjected to pest and possible storm
damage.

Model – 13% – Predicted daily Acanopy using a ray tracing, soybean canopy
architecture model with a dynamic version of the

Wang et al.
(2020)

biochemical models of photosynthesis.

Manipulation Exp. – – – – –

stacking Model – – 14% to 19% Predicted water non-limited storage organ biomass increase Harbinson
with each photosynthetic parameter increased by 20% in and Yin
wheat, potato, and maize over 10 seasons (irrigated (2023)
situations) across Europe.

27% 15% −2% to 7% Predicted ambient-Ci, high-light Aleaf in wheat using the
biochemical model of C3 photosynthesis (reflecting an A–Ci

Wu et al.
(2023)

curve with combined ‘better’ Rubisco, higher electron
transport rate, and improved gm as described above for C3

photosynthesis). Predicted Asunlit of the wheat canopy on a
sunny day. Predicted wheat grain yield outcomes over 720
seasons in dryland cropping situations across the whole of
Australia with realistic weather, soil and nitrogen input using
a cross-scale model.

7% 6% 1% to 7% Analogous to the above for C4 photosynthesis, a sorghum Wu et al.
canopy, and sorghum grain yield outcomes over 480 seasons (2023)
in dryland cropping situations across the sorghum producing
regions of Australia.

the crop cycle, which would take the same time to reach 
physiological maturity (Fig. 6i). Predicted leaf number per 
plant and leaf size remained unchanged, so no changein the 
predicted canopy LAI over crop cycle (Fig. 6l). The predicted 
increase in leaf photosynthesis increased canopy photosynthesis 
before flowering: the sunlit leaf fraction by 7% (reflecting the 
leaf-level enhancement); and the shaded leaf fraction by up to 
20% (Fig. 6m). This increased accumulated crop aboveground 
biomass to up to 8% more before  flowering (Fig. 6j). 

However, in the baseline scenario, canopy-scale photosyn-
thesis and growth-rate advantages were diminished after 
flowering due to water stress, as crop water demand was 
not fully met from soil (Fig. 6d, g, h); water stress was made 
more severe with leaf photosynthetic enhancement (Fig. 6n). 
This was because of predicted enhanced photosynthesis, 
stomatal conductance, and crop water demand, which 
depleted soil moisture faster. Water stress caused leaf senesce 
and reduced canopy LAI by up to 10% during the grain-fill 
period (Fig. 6l). The combination of water stress on 
stomatal opening, and reduced leaf-area light interception 
and photosynthesis eliminated advantages in sunlit and 
shaded leaf fraction photosynthesis: the sunlit fraction was 
cut by about 10% across the grain-fill period (Fig. 6m). This 

reduction in canopy photosynthesis reduced early advantage 
in the accumulated crop biomass, and finished at only around 
a 3% increase at physiological maturity (Fig. 6j). This biomass 
accumulation dynamic could not sustain the 3% yield increase 
achieved at around the middle of the grain-fill period, which 
finished with a −3% yield change at physiological maturity 
(Fig. 6j). The convoluted nature of the dynamic plant/crop 
attribute interactions makes them difficult to foresee but is 
made possible by using plant/crop modelling. Such a priori  
dynamic system analysis is rare in the literature, but needs 
to become the norm, providing the basis for deepening our 
understanding of plant biology beyond effects at molecular– 
organ scales to crops at a seasonal timescale, and supporting 
claims of the impacts of genetic engineering on crop-scale 
performance. 

Such intricate photosynthesis and crop dynamics result 
needs to be extended to cover conditions of intended TPEs 
to be useful for crop improvement. Wu et al. (2023) has 
offered such simulation study. They designed a large-scale 
simulation, akin to conducting METs, to study the impacts 
of photosynthetic manipulation on wheat and sorghum 
grown using Australian production as a case study. Several 
key and environmentally contrasting locations were used, 
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Fig. 6. (a) Model-guided genetic engineering framework. (b) Modelling of C4 photosynthetic manipulation outcomes at leaf scale. The
indicated CO2 assimilation rate is for an intercellular CO2 partial pressure of 160 μbar, which is achieved with a potential stomatal
conductance for the simulated assimilation rate under water non-limiting conditions. (c–h) Simulated growth and development
dynamics of a sorghum crop (see text for simulation setup): phenological stages; aboveground total crop biomass and yield;
components of yield: grain number and grain size; plant leaf number and canopy leaf area index; carboxylation- and electron-transport-
limited CO2 assimilation rate of the sunlit and shaded leaf fractions of the canopy; crop water demand and actual supply. (i–n) Predicted
changes in the corresponding growth and development attributes (note percentage change and absolute change are used in different panels).
(o) Predicted variations in sorghum yield change (Δyield) with stacking of the indicated manipulations across 120 possible seasonal weather
conditions for each of the four Australian sorghum production sites (see text for more details). The dashed lines indicate the 10th and 90th
percentile regressions forΔyield versus baseline yield. (p) Analogous with (o) for singly enhancing Rubisco. The predicted percentageΔyield
in Panel J (arrow) is just one outcome from the full 120 seasonal weather conditions by four sites combinations (arrow and diamond symbol
in Panel o). (o) and (j) are reproduced from Wu et al. (2023) – an open access article.

sampled up to 120 possible seasonal weather conditions at 
each location. Wu et al. (2023) compared results for nine 
sorghum photosynthetic manipulation strategies; two of 
which are reproduced in Fig. 6o, p. The scatter of predicted 
yield results in these panels highlight the influence of variable 
location and seasonal weather conditions: the horizontal axis 
indicates predicted sorghum yield without manipulation; the 
vertical axis indicates change in yield with manipulation 
relative to the baseline. 

The comprehensive modelling suggests that manipulation 
stacking strategies can result in more yield gains in more 
location–seasonal weather combinations, but can also result in 
yield losses in some seasons (Fig. 6o). The single manipulation 

generated less yield gain but smaller chances of yield loss 
(Fig. 6p). The exact genetic engineering decision ultimately 
depends on the attitudes of the users (i.e. grain growers) to 
risk. I argue that we need to drastically increase our knowl-
edge on crops-scale G × M × E and yield outcomes via this 
theoretical means, probing the likely benefits of molecular 
manipulation (or lack of it) – predicting why and how often 
enhanced leaf photosynthesis can boost yield or fail – to help 
design and focus on further manipulation strategies that are 
likely to have the most desirable impacts at a commercial 
crop production scale. 

The second intriguing finding is that some modelling and 
experimental work suggest that enhancements at small 
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biological scales can be translated into yield with minimal loss 
or even multiplied benefits. McGrath and Long (2014) 
claimed that a large increase in light-saturated photosynthetic 
rate (simulated by a leaf-level model) could lead to significant 
increases in yield. The work by South et al. (2019) did not 
reconcile the fact that while canopy photosynthesis only 
increased by less than 10% in their photorespiration trans-
genics, crop biomass increased by more than 40%. These 
findings are not supported by many studies that predict 
diminishing returns (Sinclair et al. 2004; Wu et al. 2018, 2023; 
Hammer et al. 2019a). The yield-scale change predicted by 
Wu et al. (2023) is consistent with transgenic field-testing 
results by Simmons et al. (2021), which conclusively show 
that a single gene manipulation or several gene mani-
pulations are unlikely to lead to significant yield advantages 
in crops. Given the data on photosynthetic manipulation at 
the leaf-scale, cross-scale modelling, and realistic expectations 
of gene manipulation effect, predictions of crop-yield change 
with photosynthetic engineering by Wu et al. (2019) and Wu 
et al. (2023)  are likely to be more realistic. Their results 
suggest that many photosynthetic enhancement strategies 
will probably result in modest yield gains (–1% to +4%) 
across Australian TEPs. This points to the need to recalibrate 
our expectations of photosynthetic gene manipulation, and 
to explore and evaluate further photosynthetic engineering 
targets in more production environments. 

To reconcile the contrasting results between model predic-
tions, it is recommended that experimental and modelling 
studies adopt the informative crop growth and development 
analysis approach exemplified in Fig. 6 and by Wu et al. 
(2023) to support yield prediction results. This will require 
synergistic controlled-environment and field experiments 
with extensive phenotyping of transgenic plants, as well as 
model simulation studies to generate comprehensive information 
across scales of biological organisation including molecular 
analysis (e.g. Ermakova et al. 2019), leaf gas exchange, plant/ 
canopy, soil–crop–environment measurements for validating 
model predictions. 

Model-guided breeding: linking complex traits
with component trait and gene/QTL target

The second avenue in which plant/crop modelling can 
support breeding is by bridging the body of molecular and 
physiological knowledge with plant breeding efforts (Fig. 3). 
Models can tease apart the environmental and management 
factors (experienced across TPEs) in the performance of 
complex traits and dissect them into component traits, 
potentially providing a closer link with the underlying 
genetic architectures. One example is the use of a cross-
scale model by Wu et al. (2019), which relates biomass and 
yield growth to underlying leaf photosynthetic CO2 and 
light-response curves and biochemical attributes. A priori  
assessment of consequent crop dynamics and evaluation of 
component traits across TPEs suggests that the maximum 

electron transport rate (Jmax) is a major target for sorghum 
yield improvement (e.g. Fig. 6 and Table 1). Results from 
such modelling have helped fuel interest in modelling and 
manipulating the photosynthetic electron transport chain 
(Ermakova et al. 2019, 2022; Jaikumar et al. 2021; Harbinson 
and Yin 2023). The emergence of high-throughput pheno-
typing techniques across scales of biological organisation such 
as photosynthesis (Fu et al. 2020; Silva-Pérez et al. 2020; 
Zhi et al. 2022), root angle (Joshi et al. 2017), whole-plant 
transpiration efficiency (Geetika et al. 2019), and plant and 
panicle numbers in field crops (Zhao et al. 2021b) can allow 
for adequate phenotypic data for genome-wide association 
analysis. Zhi et al. (2022) links Jmax to genomic regions, 
effectively generating insights into the genetic architecture 
of a component trait that is likely to have a greater impact 
on crop growth. Modelling can serve as a bridge between 
component traits with links to molecular studies and pheno-
typing strategies. 

The dissection of complex traits to component traits to 
better link with whole-genome information presents a unique 
opportunity for breeding. This extends the genome-to-
phenome (G2P) prediction concept, which is important in 
plant breeding (Cooper et al. 2014b). Previously, whole-
genome information has been used to directly predict endpoint 
traits such as grain yield. The extended G2P concept involves 
the use of whole-genome information to predict component 
traits of a CGM, which then simulates dynamic trait–crop– 
environment interactions (G × M × E) and predicts emergent 
yield outcomes. It has been demonstrated that the incorpora-
tion of CGMs in a G2P prediction approach can enhance crop 
performance prediction for new genotypes and environments, 
especially those prone to abiotic stresses, beyond the boundaries 
of testing conditions in breeding programs (Cooper et al. 2022) 
and references therein. The application of the CGM–WGP 
approach to enhance genetic gains in leaf photosynthesis and 
crop growth will first require research to integrate cross-scale 
CGMs with whole-genome prediction methodologies. 

Implications for future roles of cross-scale
plant/crop modelling

Growing knowledge in plant mechanisms and processes has 
prompted much interest in improving crop yield per land 
area via genetic/molecular manipulation approaches. But 
this will certainly require extensive yield assessment across 
TPEs, which is difficult to achieve in practice. This has 
motivated plant/crop modellers to critically analyse existing 
models (Fig. 1) and produce models that offer phenotypic 
prediction capabilities to close a widening phenotypic assess-
ment gap. Yield impact information such as presented in Table 1 
will continue to grow in its coverage of trait targets and 
simulation conditions. Confidence in models and predictions 
will continue to strengthen with more analysis comparing 
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predicted versus observed trait–crop–environment dynamics 
(Figs 5, 6). This area requires more attention if plant/crop 
modelling is to be widely applied in plant science research. 

The trait dissection–integration technique has led to 
effective and efficient system integration (Figs 2, 4), and 
deepens cross-scale modelling of complex traits and establish 
predictive links for integration with whole-genome informa-
tion via the G2P concept. Given the impact of water limitation 
on crop growth and yield (Leakey et al. 2019; Hammer et al. 
2020; Wu et al. 2023), an area of modelling research is to 
advance plant/crop models to enable probing of traits that 
influence crop water productivity. Transpiration efficiency 
(TE) is found to offer best potential for advancing crop 
adaptation relevant to drought-prone and future climates 
(Hammer et al. 2020). Via the cross-scale model of Wu 
et al. (2019), TE can be related to leaf-scale photosynthesis 
and conductance, which can be further unravelled to their 
genetic underpinnings, helping with identifying molecular 
manipulation targets and detecting desirable breeding materials. 
The overall model-guided crop improvement (Fig. 3) – 
integrating plant/crop modelling, fundamental plant science 
knowledge and genetic engineering, and plant breeding – 
presents an innovative solution for accelerating crop yield 
improvement. 

Optimising crop growth and development will require 
testing a huge number of genotypes, having unique combina-
tions of physiological attributes, in METs and MSEs. This is 
technically challenging. Simulation remains the only feasible 
avenue for exploring the huge number of genotypic possibilities. 
Beyond testing individual component traits (Table 1), there is 
a significant role for CGMs in ‘crop design’ via integration of 
genotypic and agronomic combinations – the concept of G × M 
for E by Hammer et al. (2014). Mapping the crop performance 
of individual G × M combinations onto a surface can reveal a 
crop performance ‘landscape’ from which optimal crop 
designs can be identified. Hammer et al. (2014) used the 
crop design concept to explore the productivity–risk trade-
offs of combinations of G × M in different E in Australian 
TPEs, and reported G × M options for advances at industry 
scale. Hammer et al. (2020) further incorporated future 
climatic conditions into a subsequent crop-design study and 
identified traits such as high-temperature tolerance to effects 
on seed set and TE. Such theoretical assessment is a means to 
generate guidance for advancing crop-scale adaptation to 
future TPEs. Crop design study with emerging cross-scale 
CGMs will enable design of components traits at smaller scales 
of biological organisation that may be more amenable to 
molecular and breeding manipulation – opening new avenues 
to influence important crop growth and yield traits. 

Advances in plant/crop modelling are allowing the 
integration of plant science into interpretable and predictive 
frameworks that leverage knowledge across biological scales. 
Researchers are starting to use models for evaluating and 
exploring G × M × E interactions and crop-performance 
landscapes to produce guidance for plant science and decision 

making  for crop improvement. Cross-scale models are beginning 
to demonstrate reliability in simulating trait–crop–environment 
dynamics and phenotypic prediction skills, increasing connec-
tions with fundamental plant mechanisms and processes. 
The potential to add significant value to the model-guided 
revolution in trait dissection–integration, genetic engineering, 
and connection to breeding selection is a new frontier. This can 
only be achieved by experimental and theoretical scientists 
and practitioners working together to generate the model 
development and simulation ideas that will produce the 
data for model testing and accelerate crop yield advances. 
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