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ABSTRACT 

In recent years, research on flooding stress and hypoxic responses in plants has gathered increasing 
attention due to climate change and the important role of O2 in metabolism and signalling. This 
Collection of Functional Plant Biology on ‘Flooding stress and responses to hypoxia in plants’ 
presents key contributions aimed at progressing our current understanding on how plants respond 
to low-O2 conditions, flooding stress and a combination of stresses commonly found in flooded 
areas. The Collection emphasises the characterisation of diverse plant responses across different develop-
mental stages, from seed germination to fully developed plants, and under different water stress 
conditions ranging from waterlogging to complete submergence, or simply low-O2 conditions 
resulting from limited O2 diffusivity in bulky tissues. Additionally, this Collection highlights diverse 
approaches, including eco-physiological characterisation of plant responses, detailed descriptions of 
root anatomical characteristics and their surrounding microenvironments, evaluation of the seed 
microbiota under flooding stress, the modification of gene expression, and evaluations of diverse 
germplasm collections. 

Keywords: apoplastic barriers, complete submergence, flooding tolerance, low oxygen, partial 
submergence, radial oxygen loss, saline flooding, underwater germination. 

Introduction 

Plant growth in extensive agricultural and natural ecosystems is frequently hampered by 
flooding or a combination of diverse stress conditions, including saline flooding. Flooding 
encompasses two different situations: (1) waterlogging where only the roots are affected; 
and (2) partial or complete submergence also affecting the shoots (Fig. 1). During flooding, 
the gas-filled porous spaces in the soil are replaced by water, creating a hypoxic environ-
ment that limits root respiration and plant growth. In addition to the stress resulting from a 
lack of O2, an excess of salts in saline floods can further impair plant growth in such 
conditions. The adverse consequences of flooding and low-O2 stress increase in severity, 
from soil waterlogging to partial or complete submerge of plants (Fig. 1). These conditions 
can affect all stages of the plant cycle, from seed germination underwater to vegetative 
growth or grain production. Floods may be temporary, resulting from heavy rains, or cyclic, 
occurring due to tidal movements in coastal areas. Additionally, extreme conditions can 
also occur where heavy rains are followed by prolonged droughts, or vice versa. The 
temporal variability or simultaneous occurrence of multiple stresses during specific plant 
growth stages can significantly influence their damage and shape their adaptive responses. 

The pertinent importance of studying multiple stresses 

Large areas of flooded agricultural land or those in proximity to coastal zones are often 
saline, containing phytotoxic concentrations of Na2+ and Cl− (Barrett-Lennard 2003). 
Common strategies of salt tolerance in plants include salt exclusion from sensitive tissues, 
vacuolar storage, or the restriction of salt entry into roots (Flowers and Colmer 2008). 
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Fig. 1. Flooding of plants leading to low O2 responses can occur with varying intensity, both in agriculture and in natural 
environments. Examples include (a) flooded Rumex crispus, (b) partially submerged Meionectes brownii, (c) Tecticornia 
pergranulata flooded with saline water (note the dead Melaleuca trees in the background), (d) flooded maize (Zea 
mays), (e) partially submerged sugar beet (Beta vulgaris), and (f ) almost completely submerged wheat (Triticum 
aestivum). Flooding and low O2 responses of plants constitute a compound stress and manifest at multiple levels. 
Therefore, a transdisciplinary research approach (g) is required to understand stress responses and to utilise this 
knowledge in breeding attempts aimed at enhancing the flood resilience of our crops. Photos by Ole Pedersen and 
partly created with BioRender.com. 
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However, such responses can be hampered when plants 
are exposed to soil waterlogging with saline water, as O2 
deficiency in roots leads to decline in ion (i.e. K, Na2+, Cl−) 
transport capacity and regulation (Kotula et al. 2015). 
Therefore, the combination of flooding and salinity is 
potentially more deleterious than either of these stresses 
individually (Fig. 1c). In practice, the characterisation of plant 
responses to combined stress conditions and the identification 
of associated traits of tolerance, as well as the molecular 
signalling related with those mechanisms of adaptation, may 
appear complicated. In this regard, evaluations of plants 
exhibiting high tolerance to both flooding and salinity, such 
as Salicornia europea (Jordine et al. 2024), or the evaluation 
of large populations of Festuca arundinacea (Menon-Martínez 
et al. 2024), appear to be excellent resources for traits discovery 
and selection of outstanding genotypes. 

Temporal changes in the water load within soils (for 
changes in the water table above soil, see section below) 
can also shape plant responses. In this Collection, Jordine and 
collaborators found that regular tidal flooding for 5 weeks did 
not affect growth of S. europea, whereas only 10 days of 
continuous flooding stopped plant growth (Jordine et al. 
2024). However, the anatomical plasticity of plant species 
might play an important role in their acclimation ability. 
Yamauchi and collaborators found that a larger cortex and 
aerenchyma formation in roots facilitate internal O2 diffusion 
from tissues above water down to the roots of Phragmites 
australis when grown in waterlogged soils (Yamauchi et al. 
2024). This is in stark contrast to a larger stele tissue with 
more xylem vessels facilitating water movement in Phragmites 
japonica growing under water deficit conditions. Increased 
root porosity not only facilitates greater O2 diffusion in 
flooded soils but can also improve waterlogging and drought 
tolerance by reducing metabolic costs in the root resulting 
from a reduced number of root cells (Chimungu et al. 
2014). On the contrary, a bulky tissue geometry of low porosity 
can generate hypoxic conditions due to both increased 
resistance to O2 diffusion and cellular O2 consumption, even 
under aerated environments (Brunello et al. 2024; Jiménez 
et al. 2024). 

In addition to changes in root porosity, a barrier to restrict 
radial O2 loss (ROL) is formed in roots of flood-tolerant plants 
when these grow in waterlogged soils. Such barriers are 
characterised by depositions of lignin and/or suberin in cell 
walls of the sclerenchyma, exodermis, or epidermis and 
appear as a key root trait for tolerance to multiple stresses 
(Peralta Ogorek et al. 2024). The formation of apoplastic 
barriers in the outer part of the root facilitates internal O2 
diffusion by impeding ROL from roots to the rhizosphere. 
This barrier also restricts water loss from roots (Peralta 
Ogorek et al. 2023) and the entry of soil phytotoxins in 
the opposite direction (from soils to the roots; i.e. NaCl, 
Ranathunge et al. 2011; reduced iron, Jiménez et al. 2021; 
hydrogen sulfide, Peralta Ogorek et al. 2023). Consequently, 
the outer apoplastic barriers play an important role in scenarios 

involving multiple stress conditions, as the barriers can impede 
O2 and water loss from roots, while also preventing the entry of 
salts or other phytotoxins from rhizosphere to roots. However, 
more research is needed to evaluate the potential drawbacks of 
such barriers especially for nutrient and/or water uptake. 

Type of stress – intensity of the stress condition 

In lowland regions or during periods of heavy rainfall, water 
levels can rise in poorly drained soils, causing partial or even 
complete submergence of plants, thereby further hampering 
plant growth. The longer the diffusional path between the 
atmosphere and the submerged tissues; i.e. the deeper the 
flood, the lower the net O2 flux; therefore, deeper water 
tables above the plant imply less O2 availability for plant 
growth. Complete submergence not only affects O2 diffusion 
for respiration but also CO2 diffusion for photosynthesis. 
As such, plant responses to hypoxic conditions, including 
molecular signalling, upregulation of hypoxic genes, anatomical 
changes and overall plant responses to such conditions vary 
widely between different water levels. These responses are 
detailed by Lin and colleagues in this issue. In waterlogged 
soils, aerenchyma formation and the development of 
barriers to impede ROL facilitate internal O2 diffusion from 
shoots above water down to submerged roots (Lin et al. 
2024; Peralta Ogorek et al. 2024). In situations of partial 
submergence, the plant may escape submergence by elongating 
the shoots to enhance contact with air or, alternatively, may 
become quiescent by stopping growth to conserve resources 
(Hattori et al. 2009). Additionally, an increased formation 
of aquatic adventitious roots developed from submerged 
stem internodes can enhance O2 uptake from O2 dissolved 
in the floodwater (Lin et al. 2021). In the extreme case of 
complete submergence, the formation of gas films in leaves 
allow diffusion of molecular O2 and CO2 dissolved in water 
into the leaf (Colmer and Pedersen 2008) and therefore 
these gas films might play an important role in internal 
aeration under such conditions. 

Evaluations of plant responses during continuous periods 
of waterlogging, partial or complete submergence, compared 
to non-stress controls, represent the basis of our current 
understanding of how plants respond to such conditions. 
However, plant responses during the recovery phase after 
the flood has receded have often been overlooked (Striker 
2012). Stunted growth during flooding does not necessarily 
indicate poor performance under stress, nor does enhanced 
growth during stress indicate tolerance. In fact, the latter 
can lead to depletion of resources, hampering further growth 
in the recovery phase. In this Collection, Buraschi et al. (2024) 
found that some genotypes of the forage legume Lotus spp. 
exhibited better growth under partial or complete submer-
gence, whereas other Lotus genotypes grew better during 
the recovery phase. Furthermore, the same study revealed 
that there was no apparent correlation between the intrinsic 
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growth ability under non-stress conditions and growth under 
submergence stress. In contrast, Menon-Martínez and colleagues 
(this Collection 2024) evaluated 39 tall fescue (Festuca spp.) 
genotypes and indicated that more productive acces-
sions under non-stress conditions also showed greater stress 
tolerance (Menon-Martínez et al. 2024). These differences 
in response to stress compared to non-stress conditions are 
highly relevant, as breeding efforts should prioritise high 
productivity under both stressful environments and optimal 
growth conditions. 

Flooding can also affect plant growth at different stages. 
The impact on productivity differs among crops; field peas 
are severely affected at any stage, early flooding greatly 
impacts wheat production, whereas barley (Hordeum vulgare) 
and rapeseed (Brassica napus) can still produce significant 
yield if transient flooding occurs during early rather than at 
late stages (Ploschuk et al. 2018). Flooding during seed 
germination stages can hamper crop seed germination while 
favouring the germination of better adapted weed species 
(Echeverry Holguín et al. 2024). Flood-adapted plants like 
rice can germinate under water, outcompeting weeds, but 
flooding during germination stages can be deleterious for 
other non-adapted crops, and underwater germination can 
benefit weed survival. After successful germination, constitu-
tive aerenchyma formation in populations of black-grass 
(Alopecurus myosuroides) weeds, but not in wheat genotypes, 
facilitated rapid establishment of the former when challenged 
by waterlogging (Harrison et al. 2024). Several environmen-
tal and intrinsic factors including temperature and nutrient 
conditions (Echeverry Holguín et al. 2024), transcriptomic 
and metabolomic responses (Harrison et al. 2024), and the 
composition of bacterial microbiota inhabiting the seeds 
(Gómez-Álvarez et al. 2024) play important roles in 
determining the ability of a seed to germinate and/or grow 
under water or under hypoxic conditions. 

Transdisciplinary research 

It requires transdisciplinary research efforts in order to 
identify mechanisms of adaptation, as complex stress condition 
can vary in intensity and affect different stages of plant 
development and/or the normal functioning of different plant 
tissues (Fig. 1g). A set of genes, including some required for 
fermentative metabolism, redox management or simply 
those involved in O2 sensing, have been widely identified in 
the model plant Arabidopsis thaliana in response to hypoxia 
(Mustroph et al. 2009; Weits et al. 2014). Some of these 
hypoxia-responsive genes were found to be strongly induced 
in the aerial, yet hypoxic roots of Phalaenopsis orchids 
(Brunello et al. 2024), or in the shoots of the halophyte 
S. europea in response to flooding (Jordine et al. 2024). 
This indicates that similar responses to hypoxia stress are 
conserved across different plant species or tissues, and that 
the vast molecular information generated in the model plant 

Arabidopsis could be used to integrate the molecular 
responses of crops to flooding conditions. Interestingly, the 
upregulation of metabolism-based herbicide resistance 
genes in shoots in response to root waterlogging (Harrison 
et al. 2024), or the higher expression of hypoxia-related 
genes followed by salinity treatments (Jordine et al. 2024), 
suggest a parallel stress response to different stress conditions 
that deserves further investigation. 

Root anatomical traits, including aerenchyma development 
and the formation of barriers to ROL are common adaptive 
responses of plants to waterlogging, droughts, and saline 
conditions (Peralta Ogorek et al. 2023; Yamauchi et al. 
2024). The known effect of ethylene in inducing aerenchyma 
but not a barrier to ROL (Colmer et al. 2006), and conversely, 
the induction of the barrier to ROL following applications of 
ABA but with no concomitant effect on aerenchyma formation 
(Shiono et al. 2022), indicate that these acclimations are 
differentially regulated. While the molecular mechanisms of 
O2 sensing in hypoxic conditions are well-described in 
Arabidopsis (e.g. reviewed in León et al. 2021; Loreti and 
Perata 2023; Renziehausen et al. 2024), further research is 
needed on the specific signalling pathways and the molecular 
regulation of traits conferring hypoxia tolerance, as well as 
their functional characterisation and translation of such 
resources into flooding-sensitive crops. Excitingly, excellent 
examples of the use of molecular tools characterising genes 
responsive to hypoxia, tissue metabolic responses to hypoxia, 
tissue O2 status, anatomical changes facilitating effective O2 

diffusion, and whole-plant responses to waterlogging, partial 
or complete submergence, or a combination of flooding with 
other stress conditions are well described in this Collection on 
‘Flooding stress and responses to hypoxia in plants’. These 
examples represent the diverse efforts of the research 
community to understand how plants respond to low-O2 

conditions. The evaluation of undomesticated target genotypes 
or large populations of crops are key strategies to develop 
genotypes with outstanding adaptation to such stressful 
conditions, and we believe that transdisciplinary approaches 
are essential to tackle the deleterious effect of flooding in crops. 
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