Functional Plant Biology

Continuing Australian Journal of Plant Physiology

Contents

Volume 30Number 52003	
Review: Integrated plant proteomics — putting the green genomes to work <i>Joshua L. Heazlewood and A. Harvey Millar</i> 471–482	This review paper is a useful introduction to the area of proteomics as applied to plants. It covers all of the technical aspects of proteomics as applied to model plants, and outlines the current status of the field.
Soil strength and rate of root elongation alter the accumulation of <i>Pseudomonas</i> spp. and other bacteria in the rhizosphere of wheat <i>Michelle Watt, Margaret E. McCully and</i> <i>John A. Kirkegaard</i> 483–491	These authors compared wheat roots in a field and in a controlled environment to demonstrate that slow-growing roots in hard soil accumulate bacteria in the rhizosphere, while fast-growing roots in looser soil escape this accumulation. The results are important for the understanding of interactions between abiotic and biotic factors and root growth in soil.
Physiological roles for aerenchyma in phosphorus- stressed roots <i>Mingshou Fan, Jinming Zhu, Christina Richards,</i> <i>Kathleen M. Brown and Jonathan P. Lynch</i> 493–506	Low phosphorus availability induces the formation of cortical aerenchyma in roots; these aerenchyma may help P-deficient plants reduce root respiratory and P requirements, thus increasing the metabolic efficiency of soil exploration. Substantial intraspecific variation in aerenchyma formation is reported in two major crop species, raising the possibility of breeding for this trait to enhance crop P efficiency.
Effect of calcium on root development and root ion fluxes in salinised barley seedlings <i>Sergey Shabala, Lana Shabala and</i> <i>Elizabeth Van Volkenburgh</i> 507–514	This paper describes the impact of salinity on various physiological processes and characteristics in barley plants, and discusses amelioration of salt stress symptoms by supplemental Ca. The authors investigate mechanisms by which salinity inhibits root and shoot performance, and discuss underlying cellular and ionic mechanisms by which supplemental calcium ameliorates the salt stress.
Response of <i>chlorina</i> barley mutants to heat stress under low and high light <i>Katya Georgieva, Ivanka Fedina, Liliana Maslenkova</i> <i>and Violeta Peeva</i> 515–524	This paper explores the combined effect of heat stress and light intensity on photosynthetic activity in wild type and two separate chlorina mutants barley plants. High light had a protective effect on photosynthetic activity when plants were exposed to high temperature, where heat stress at low light strongly reduced the functional activity of several factors.
Cytokinin metabolism in <i>Narcissus</i> bulbs: chilling promotes acetylation of zeatin riboside <i>David S. Letham, Noel G. Smith and</i> <i>David A. Willcocks</i> 525–532	This paper addresses the question of endogenous cytokinin involvement in <i>Narcissus</i> bulb dormancy and post-dormant development. The data make novel contributions to the field, especially in the demonstration of metabolism of O-acetyl compounds, the finding of low temperature enhancing the formation of acetyl zeatin riboside, a rare cytokinin metabolite, and measurement of endogenous levels.

Cover illustration: Aerenchyma in low phosphorus roots reduces the metabolic cost of soil exploration; illustration shows high (left) and low (right) phosphorus models (see Fan *et al.*, pp. 493–506).

Capacity of protection against ultraviolet radiation in s and shade leaves of tropical forest plants <i>G. Heinrich Krause, Alexander Gallé, Rolf Gademan</i> <i>and Klaus Winter</i> 533–3	Tropical forest plants experience high levels of UV radiation. This study utilizes a novel, non-invasive technique to examine the capacity for UV protection. The authors show that sun leaves of tall forest trees are generally well protected, whereas shade leaves from both the forest canopy and forest understory are only modestly protected.
Cold-induced photoinhibition and winter leaf-loss in the broad-leaved tree <i>Aristotelia serrata</i> (Elaeocarpaceae) <i>Roger J. Dungan, David Whitehead, Matt McGlone,</i> <i>Richard P. Duncan and Robert B. Allen</i> 543–3	This research investigates cold-induced photoinhibition of photosynthesis and leaf loss in the broadleaved native New Zealand tree <i>Aristotelia serrata</i> . The authors investigated the extent of leaf loss in various parts of the canopy, and the effects of cold leaf temperatures and high irradiance during winter frosts. Their results contribute to a model of canopy carbon uptake.
Growth, carbon allocation and proteolytic activity in the seagrass <i>Zostera noltii</i> shaded by <i>Ulva</i> canopies <i>Fernando G. Brun, Ignacio Hernández, Juan J. Verga</i> <i>and J. Lucas Pérez-Lloréns</i> 551–5	This paper explores the low capacity of short seagrasses to survive under low light conditions, possibly due to a lack of sucrose mobilisation throughout the plant, and low starch reservoirs to meet the increase in carbon demands. The authors examined the activity of the enzymes implied in the carbon partitioning, sucrose synthase and sucrose phosphate synthase.
Describing and modelling ozone-dependent variation is flavonoid content of bean (<i>Phaseolus vulgaris</i> cv. Bergamo) leaves: a particular dose–response relationship analysis <i>Myriam Kanoun, Philippe Goulas and</i> <i>Jean-Philippe Biolley</i> 561–3	These authors compare ozone exposure indices as predictors of the appearance of foliar symptoms and accumulation of a particular flavonoid in bean grown in open-top field chambers. They show that the phenolic response can be linearly related to a well-computed external ozone dose. The choice of the best predictor is dependent on leaf type.
A possible origin of the middle phase of polyphasic chlorophyll fluorescence transient Ban-Dar Hsu and Kuen-Lin Leu 571–3	This paper provides a rather unusual explanation for the middle phase of polyphasic chlorophyll fluorescence kinetics. To date, only a few groups have attempted to analyse the complex chlorophyll fluorescence transients; these authors provide convincing evidence that the J to I phase may be contributed to by pigments located far from the illuminated leaf surface.