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Abstract. There is global concern over our capacity to feed a rapidly growing world population against a background of
climate change and a shortage of renewable resources for agriculture. To address this challenge, sustainable intensification
of crop production will be required to deliver increased yields with decreased environmental side effects, while maintaining
the land area under cultivation. We must exploit new understanding in the science of crop production, in order to achieve
both an improvement of crops and more effective agro-ecological management. The focus of this short article and the
following papers that make up a research front on drought effects and water use efficiency is on science for the
development of crops and cropping systems for water scarce environments. Both increases in drought resistance and
efficiency of water use will be required in the major cropping regions of the world where water is already a significant
limiting factor.
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Current projectionsby the International Panel forClimateChange
(IPCC 2007) predict that water scarcity, together with incidence
of high temperature, will increase in the near future in many
regions of the globe. Although fertilisation by rising CO2 may
partly offset the effects of these changes on plant growth and
development, a detrimental effect on food and feed production is
predicted to occur inmanyof themajor food-producing regions of
the world (see e.g. Lobell et al. 2008). It is therefore important to
combine expertise from different disciplines to identify and
overcome crop genetic and agronomic limitations to yield
under unfavourable environments, particularly under drought.
This is a conclusion of a recent report on Food Security produced
by the Royal Society of London (The Royal Society 2009). Here,
there is a call for substantially enhanced attention (and funding!)
to be given to the science of food production that might be
exploited to enhance world food supply. This is particularly
important as climate changes, soil becomes degraded and vital
resources such as irrigationwater are in increasingly short supply.

Substantial research efforts in recent years have generated
major scientific advancements in our comprehension of the
mechanisms underlying plant responses to water deficits and
co-occurring stresses (Chaves et al. 2003, 2009; Lawlor and
Tezara 2009), with high potential for this knowledge to be
translated into improved crops (Parry et al. 2009; Reynolds
et al. 2009; Xiao et al. 2009; Jiang et al. 2010). In the absence
of any significant biotechnological advance to date in increasing

the drought resistance of the major crop plants (sustained yield
under water scarcity), plant improvement is dependent upon the
screening of a wide range of germplasm for our major crops
in order to identify genetic variation in major traits involved in
stress resistance (Lopes andReynolds 2010; Richards et al. 2010;
Saint Pierre et al. 2010). The importance of this strategy was
recognised in the recent conference on ‘Integrated approaches
to improve crops production under drought prone environments’
(InterDrought III, http://www.interdrought.org/), that took place
in Shanghai in October 2009. Good progress has been made
recently in understanding the basis of the sensitivity of
reproductive processes of several major crops to drought and
this understanding has been successfully exploited in crop
improvement (Edmeades et al. 1999). In addition, we have
recognised the importance of several developmental characters
in increasing crop yield under drought stress via an increase in
crop establishment. Significant advances have been made in
exploiting fundamental understanding of both the basis leaf
level water use efficiency and convenient and rapid means of
screening for this character. There is now a general recognition
that advances in the efficacy of high throughput screening of
plant genetic material will speed progress in crop improvement
via breeding programs (see e.g. Richards et al. 2010).

At the InterDrought meeting, there was also a compelling
report from Monsanto of new drought tolerant maize genotypes
that are currently in their plant improvement pipeline. These
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crops and others under development show overexpression of
bacterial RNA chaperones (Castiglioni et al. 2008), and NF-Y
class transcriptional regulators (Nelson et al. 2007) in which
drought tolerance is reported. Tolerance to a whole range of
stresses in plants may also be induced by RNA silencing to
downregulate poly ADP ribose polymerase (Vanderauwera
et al. 2007), and overexpression of a cyanobacterial flavodoxin
(Tognetti et al. 2006). Until comprehensive field trials are
conducted with this material, some caution must be exercised.
In recent years, there have been several reports of apparently
promising biotechnological manipulations that have failed
to deliver drought tolerance in yield terms when the novel
material is transferred from the growth room to the field. One
important development in this field is thework of an international
consortium funded to produce ‘Water Efficient Maize for Africa’
(WEMA), an ambitious and vitally important target.

Mounting concern over our capacity to feed a world
population of seven billion, perhaps rising to nine billion by
the middle of the 21st Century, has resulted in a call to double
food production over this time period. The most optimistic
predictions suggest that a 50% increase in food production
will be required (The Royal Society 2009). The ‘sustainable
intensification’ required to deliver increased food production
will place enhanced pressure on water resources. At the same
time, there is increased global perception of a need to reduce the
‘water footprint’ for irrigated crops (www.fao.org/nr/water/
aquastat/data/query/index.html) (Cominelli et al. 2009). At
InterDrought III, Peng and colleagues from the Ministry of
Agriculture in China highlighted the very significant falls in
groundwater levels in both NW China and on the North China
Plain, both important food production regions in China. Concern
over the capacity of farmers to sustain food production in these
conditions, a concern shared by food producers in many water-
scarce regions of the world, has led to the development of the
discipline of water saving agriculture.

As pointed out by Passioura (2007) and Blum (2009), the
effective use by the crop of a limitingwater supply is the keystone
of ‘drought resistance’. This can be achieved by adjusting crop
phenology to its environment or by using agronomic practices
aiming at an improved water use such as deficit irrigation.
A variety of approaches have been particularly successful in the
irrigation of top fruit and vineyards (Chaves et al. 2007; Fereres
and Soriano 2007; Beis and Patakas 2010; Collins et al. 2010;
Lovisolo et al. 2010) but also in annual crops (Kang and Zhang
2004; Dodd et al. 2006; Kirda et al. 2007; Wang et al. 2010).
In addition to minimising changes in shoot water status, deficit
irrigation enhances the balance between fruit and vegetative
growth (Davies et al. 2002; Chaves and Oliveira 2004).

Over the last 20 years or so, there has been interest in
exploiting novel understanding of plant biology to optimise
use of irrigation water in water-scarce environments. One
technique that aims to do this by exploiting the science of
plant root-to-shoot signalling is partial root zone drying (PRD)
(see e.g. Stoll et al. 2000). There have been two recent meta-
analyses of the agronomic impacts of PRD. In one of these,
which focuses exclusively on field-grown, mainly woody
perennial crops (Sadras 2009), there is little difference
reported in the effects of reduced amounts of water applied in
different ways, suggesting that in these systems there may be

little ‘added value’ from PDR irrigation compared with
other forms of deficit irrigation. In the other meta analysis
(Dodd 2009), where a broader range of annual and perennial
crops were grown in both containers and in the field, spatial
variation in the supply of reduced amounts of water to the soil
generated important differences in crop yield. In 40% of the
cases considered, plants irrigated using PRD techniques
showed statistically higher agricultural water use efficiencies
(yield per unit of water applied). It is important to understand
the physiological basis of these responses and to devise
reliable ways of delivering these results in commercial crop
production.

Dodd (2009) reviews evidence that under partial root drying
the cycles of soil drying/rewetting stimulate mineralisation of
organic N due to microbial death upon drying. Turner and
Haygarth (2001) have reported enhanced mobilisation of
phosphorus in response to wetting and drying of soils. Kirda
et al. (2005) have shown that PRD can increase nitrogen
scavenging by root systems, when compared with nutrient
uptake by plants irrigated by other deficit irrigation techniques.
Changed nutrient relations may be one explanation for superior
performance of PRD plants under certain conditions.

Detailed work by Dodd and colleagues (Dodd et al. 2006,
2008a, 2008b; Dodd 2007) has shown how PRD can enhance
hormone signalling between roots and shoots and that such
signalling can have beneficial effects on the efficiency of water
use.However, enhanced signallingdoesnot always occur and this
is particularly the case at lower soilwater contents, an observation
that can explain some of the negligible effects of PRD reported by
Sadras. Dodd’s analysis suggests that PRD can be an effective
means of increasing the production of more ‘crop per drop’ but
that this result depends on the technique used to apply the soil
water deficit, the extent of the drying treatment and the crop
in question.

Recently, rhizobacteria have been shown to be effective in
reducing theyieldpenalty inducedby soil drying (Díaz-Zorita and
Fernández-Canigia 2009), apparently acting via effects on root
growth, hormone signalling andnodulation (Belimov et al. 2009).
This work suggests that attention given to manipulation of soil
biology as well as to novel plant biology, can allow more
sustainable use of water and nutrients in agriculture. There are
increasing numbers of reports suggesting microbial activity
in soils can be an important regulator of crop development and
functioning. These arise, for example, from studies where
minimum tillage techniques are assessed (e.g. Pankhurst et al.
2002). The studies of Belimov and co-workers and others
(e.g. Glick et al. 1998) suggest that particular kinds of
microbial activity in soils can enhance the drought resistance
of crops.

Several biological-based technologies have been developed in
the past decades to allow maintenance of crop production and
functioning under adverse environments, and in particular
drought prone areas. These are fundamental if we are to
increase food production at the global scale, while at the same
time preserving natural resources. It is recognised (see The Royal
Society 2009) that the large improvements needed to attain such a
goal require a rapid strengthening of human capital and research
funding and human capital to overcome chronic underfunding of
plant/agriculture science research.
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