Functional Plant Biology

Contents

Volume 39 Issue 5 2012

Viewpoint: Is transpiration efficiency a viable Improved transpiration efficiency is often voiced as a means to plant trait in breeding for crop improvement? increase crop yields in water-deficit environments. In this Thomas R. Sinclair 359-365 review, it is shown that transpiration efficiency is a complex characteristic, which limits it use for genetic improvement. Instead, it is concluded that specific plant traits contributing to transpiration efficiency should be studied to increase the effective use of available water for maximum crop growth and vield. Partial rootzone drying increases water-use efficiency Water scarcity is forcing irrigators worldwide to improve crop water-use efficiency (WUE) by adopting irrigation strategies of lemon Fino 49 trees independently of root-to-shoot ABA signalling such as partial rootzone drying (PRD). Although PRD aims to J. G. Pérez-Pérez, I. C. Dodd and P. Botía 366-378 alter ABA root-to-shoot signalling, analysis of the sensitivity of Citrus leaf gas exchange to soil, plant and atmospheric variables showed an ABA-independent enhancement of leaf and crop WUE. Refinement of PRD strategies, based on understanding long-distance chemical signalling, is necessary to maximise PRD's benefits. Increasing crop productivity and adaptation to drought are Root traits and $\delta^{13}C$ and $\delta^{18}O$ of durum wheat under different water regimes paramount to palliate the challenges imposed by global climate Abdelhalim Elazab, Gemma Molero, change while securing food production in the future. Roots are of Maria Dolores Serret and José Luis Araus 379-393 primary importance in plant adaptation to drought but breeding crops for more efficient roots is a difficult task given the nature of such a plant organ, which remains hidden in the soil. This study shows different traits that facilitate the selection of plants with more efficient roots. Alternative methods for scaling leaf hydraulic Leaf hydraulic and morphological adaptation to different conductance offer new insights into the environmental cues is crucial for plants' success. We measured structure-function relationships of sun leaf hydraulic conductance scaled by leaf surface area, volume and shade leaves and dry weight in sun and shade leaves of Holm oak. Structural Andrea Nardini, Giulia Pedá changes of leaves acclimating to different light intensities 394-401 enhance water transport to the unit evaporating leaf surface area, and Sebastiano Salleo and maintain hydraulic supply to mesophyll cells and carbon costs of the water transport system.

Cover illustration: Thermal image of durum wheat plants growing under well watered (right) and water stress (left) conditions in lysimeters at the Experimental Fields of the University of Barcelona (see Elazab *et al.* pp. 379–393).

Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (<i>Oryza sativa</i>) <i>Veeresh R. P. Gowda, Amelia Henry,</i> <i>Vincent Vadez, H. E. Shashidhar</i> <i>and Rachid Serraj</i>	402411	Genetic variation in rice water uptake patterns may help identify drought resistance mechanisms. In lowland rice lysimeter studies, water uptake dynamics of the OryzaSNP panel under drought were related to root growth at depth. These results reflect the ability of some genotypes to increase root growth at depth during the slow progression of drought stress in lowland soils.
Identification and characterisation of a novel class I endo-β-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry <i>Martín G. Martínez Zamora,</i> <i>Carlos Grellet Bournonville,</i> <i>Atilio P. Castagnaro and Juan C. Díaz Ricci</i>	412420	Plant susceptibility/resistance is determined by the rate and magnitude of activation of defence mechanisms, and by its effectiveness against a particular pathogen. The induction of the novel class I β -1,3-glucanase FaOGBG-5 from strawberry infected with a virulent and an avirulent fungal pathogen was analysed and compared with a previously reported class II enzyme. Results suggest that this enzyme is involved in the salicylic acid and the ethylene dependent defence response.
Water loss from leaf mesophyll stripped of the epidermis <i>Martin Canny</i>	421–434	Evaporation of water vapour from leaves is through closable valves in the epidermis (stomata), which respond to the environment and regulate water loss. This paper joins a century- long debate on whether cells inside the leaf can also regulate water loss, by measuring evaporation from leaves stripped on an epidermis, and revealing a daily rhythm of evaporation. This opens new possibilities of controlling plants' sensitivity to lack of water.
Is mesophyll conductance to CO ₂ in leaves of three <i>Eucalyptus</i> species sensitive to short-term changes of irradiance under ambient as well as low O ₂ ? <i>Cyril Douthe, Erwin Dreyer, Oliver Brendel and Charles R. Warren</i>	435–448	In addition to stomata, mesophyll tissues oppose a resistance to the influx of CO_2 during photosynthesis in leaves. We showed, with an approach based on online discrimination against ¹³ CO ₂ during photosynthesis, that this resistance increases in the short term when irradiance decreases, and decreases oxygen in the atmosphere is switched from ambient to very low values. Such findings are important for understanding the limiting factors of photosynthesis.