Saturated fat has been unfairly demonised

While there may be room for legitimate debate about the proportion of coronary heart disease (CHD) that can be attributed to high saturated fat diets, it is time for the sceptics (and vested interests) to abandon denial, stop cherry-picking negative studies and accept the evidence! A causal relationship between saturated fat consumption and CHD is now scientifically convincing in range, quality and consistency.

It has long been universally accepted that increased saturated fat consumption leads to increased total, low-density lipoprotein (LDL), and total/high-density lipoprotein (HDL) cholesterol and that increased total, LDL, and total/HDL cholesterol leads to increased CHD, but sceptics have considered this to be indirect and insufficient evidence that saturated fat and CHD are causally linked. However, the more direct line of evidence, based on randomised controlled trials and cohort studies, demonstrating associations between low-saturated-fat diets and reduced CHD incidence, is now convincing.

It is important to understand that the effect of saturated fat on CHD cannot be examined in isolation from other components of the diet, because when saturated fat is removed from the diet it must be replaced with another macronutrient such as protein, carbohydrate, or other types of fat. Thus, the best science shows the effects of replacing saturated fat with some other component of the diet. In this regard, there is unanimous agreement by expert groups, even the sceptical ones, that replacing saturated fat with polyunsaturated fat reduces the risk of CHD.

The effect of saturated fat on blood lipids is unequivocal and must surely rank as one of the most extensively researched and well substantiated effects of diet on a risk factor for chronic disease. The results of a meta-analysis of 90 randomised controlled trials of dietary fat modification showed that replacing 5% of energy from saturated fat (about 12 g/d, the amount in 25 g of butter or 45 g of cheese) with polyunsaturated fat reduced LDL cholesterol concentration by 0.26 mmol/L and total/HDL cholesterol by 0.18; the reduction with monounsaturated fat being slightly less, 0.21 mmol/L for LDL cholesterol and 0.15 for the total/HDL ratio.

There is similarly overwhelming evidence that blood cholesterol is a major cause of CHD. The Prospective Cohort Collaboration, a meta-analysis of individual participant data from 61 prospective studies with 55,000 vascular deaths, showed that a 1 mmol/L lower total cholesterol was associated with a halving of CHD risk in both sexes at ages 40–49 years, a 33% reduction at ages 50–69, and a 17% reduction at ages 70–89 years. Moreover, multiple meta-analyses of randomised controlled trials show that reducing blood cholesterol with drugs decreases CHD risk in a dose-dependent manner; 19% reduction in coronary mortality per 1 mmol/L reduction in LDL cholesterol.

In contrast, until recently there was some uncertainty about the evidence directly linking saturated fat intake with risk of CHD. The necessary studies are notoriously difficult to do well; a problem not well understood by the sceptics who have misinterpreted negative studies as evidence of no effect. Cohort studies are plagued by measurement error (of dietary intake) and confounding, while randomised trials of sufficient size and duration are extremely expensive to undertake, and maintaining participants on allocated diets is almost impossible. However, several recent
Saturated fat has been unfairly demonised

easily achievable for a large proportion of New
take to 5–10% of total energy is warranted and
will have achieved this. Decreasing saturated fat
should not exceed 10% of energy intake; thus, the
population mean should be considerably less than
10%. The 2008–09 National Nutrition Survey
results from the last National Nutrition Survey
fore the introduction of statins.

evidence for years, as reflected in their falling
many New Zealanders have been acting on this
to saturated fat and concomitant increase in
polyunsaturated fat.

With regard to randomised trials, the best
evidence has often been overlooked or examined
piecemeal, possibly because most of the trials
were published 20 to 40 years ago. Two meta-
analyses of randomised controlled trials where
the primary intervention was replacement of
saturated fat with polyunsaturated fat have been
published in the last two years and provide com-
pelling evidence. Skeaff and Miller found that
high P/S (polyunsaturated to saturated fat ratio)
diets reduced the risk of coronary events by 17%
(95% CI, 0–39%, p=0.05) compared with lower
P/S diets.7 Mozaffarian et al. found that high
P/S diets reduced risk of myocardial infarction
or coronary heart disease death by 19% (95% CI,
5–30%, p=0.008).8

In conclusion, the evidence indicates that it
is quite fair to demonise saturated fat. Fortunately
many New Zealanders have been acting on this
evidence for years, as reflected in their falling
blood cholesterol levels, that began well be-
fore the introduction of statins.9 Nonetheless,
results from the last National Nutrition Survey
(1997) showed that New Zealanders consumed,
on average, 15% of their energy as saturated
fat.10 Current Australasian nutrition guidelines
recommend that, for individuals, saturated fat
should not exceed 10% of energy intake; thus, the
population mean should be considerably less than
10%. The 2008–09 National Nutrition Survey
will report later this year and it is unlikely we
will have achieved this. Decreasing saturated fat
intake to 5–10% of total energy is warranted and
easily achievable for a large proportion of New
Zealand adults by reducing consumption of high
fat dairy products, fatty meats, cakes, biscuits,
and confectionery products and replacing this
with nuts, seeds, plant oils (e.g. soybean, canola,
sunflower, or safflower), and doing the margar-
ine table spread for butter swap. Indeed, as the
world’s largest consumers of butter, estimated
to account for almost 20% of our total saturated
fat consumption, New Zealanders could improve
their cardiovascular health with the stroke of a
(butter) knife.

References
1. Food and Agriculture Organization of the United Nations. Fat
and fatty acids in human nutrition: Report of an expert consul-
intakes of saturated fat in the prevention of cardiovascular
disease: where does the evidence stand in 2010? Am J Clin
3. Mozaffarian D, Clarke R. Quantitative effects on cardiovas-
cular risk factors and coronary heart disease risk of replacing
partially hydrogenated vegetable oils with other fats and oils.
4. Prospective Studies Collaboration. Blood cholesterol and
vascular mortality by age, sex, and blood pressure: a meta-
analysis of individual data from 61 prospective studies with
cholesterol-lowering treatment: prospective meta-analysis
of data from 90,056 participants in 14 randomised trials of
6. Jakobsen MU, O’Reilly EJ, Heitmann BL, et al. Major types of
dietary fat and risk of coronary heart disease: a pooled anal-
7. Skeaff CM, Miller JC. Dietary fat and coronary heart disease:
summary of evidence from prospective cohort and ran-
8. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart
disease of increasing polyunsaturated fat in place of saturated
fat: a systematic review and meta-analysis of randomized
Did it fall or was it pushed? The contribution of trends in
established risk factors to the decline in premature coronary
10. Skeaff CM, Mann JJ, McKenzie J, Wilson NC, Russell DG.
Declining levels of total serum cholesterol in adult New Zea-