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Abstract
Parkinson's disease (PD) is one of the most common disabling neurological disorders and results
in substantial burden for patients, their families and the as a whole society in terms of increased
health resource use and poor quality of life. For all stages of PD, medication therapy is the preferred
medical treatment. The failure of medical regimes to prevent disease progression and to prevent
long-term side effects has led to a resurgence of interest in surgical procedures. Partially observable
Markov decision models (POMDPs) are a powerful and appropriate technique for decision making.
In this paper we applied the model of POMDP's as a supportive tool to clinical decisions for the
treatment of patients with Parkinson's disease. The aim of the model was to determine the critical
threshold level to perform the surgery in order to minimize the total lifetime costs over a patient's
lifetime (where the costs incorporate duration of life, quality of life, and monetary units). Under
some reasonable conditions reflecting the practical meaning of the deterioration and based on the
various diagnostic observations we find an optimal average cost policy for patients with PD with
three deterioration levels.

Introduction
Parkinson's disease (PD) is characterized by a progressive
loss of substantia nigra pars compacta (SNc) neurous of
unknown etiology [1]. The gold standard for PD diagnosis
is the neuropathological examination. Since there are no
known clinical biomarkers for disease detection, diagno-
sis is based on clinical criteria. The three main features are
tremor, rigidity and motor dysfunction such as freezing
and bradykinesia (slowness of movement). In the early
stages of PD, symptoms and signs are asymmetrical how-
ever, with disease progression, PD becomes a bilateral
condition. Although major symptoms can be attenuated
by dopaminergic medication within the first years of PD,
no treatment is currently available to stop or slow the on
going nigral degeneration [2].

Clinical symptoms of PD may include from slowness in
activities of daily living (ADL) (such as dressing, walking
and doing household chores, difficulty and taking longer
to get up from a chair, reduced arm swing, flexed posture
and a shuffling gait (bradykinesia), rigidity, and cog-
wheeling (ratchet-like feel of muscles) on passive move-
ment. The Unified Parkinson's Disease Rating Scale
(UPDRS), is a measure of overall motor function evalua-
tion. Also the Activities of Daily living (ADL) score may
provide new elements for the same evaluation [3].

Treatments for PD aim to improve motor function and
quality of life. Clinical management varies with disease
severity and the age of patient. The severity of disease is
defined as the degree of functional disability, whereas the
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age of the patient is important with respect to the adverse
effects of the drug being prescribed, see [1]. During the
last few years, Deep Brain Stimulation (DBS) of the Sub-
thalamic Nucleus (STN) has emerged as a promising ther-
apy, alleviating major motor symptoms of Parkinson's
disease. Deep brain stimulation is a surgical procedure
indicated in the relief of symptoms of Parkinson's disease,
essential tremor and dystonia. It involves the surgical
implantation of the DBS device, which includes the
implantable pulse generator or stimulator, the extension,
and the lead. The electric impulse is produced within the
stimulator component, and transmitted to the brain site
by the extension and the leads. DBS surgery can be either
unilateral or bilateral. The laterality of the surgery and tar-
get area for brain stimulation may vary with the type of
symptom or spectrum of symptoms and such decisions
are made on a case-by-case basis.

In general, however, the target areas for DBS stimulation
are as follows, with the accompanying symptom: Tha-
lamic region-predominantly for tremor. Subthalamic
region-for tremor, dyskinesia, bradykinesia, akinesia,
speech difficulties, and freezing globus pallidus, internal
segment region for diskinesia, tremor, rigidity, bradyki-
nesia, and akinesia. The clinical effectiveness of STN-DBS
has largely been demonstrated and was verified by assess-
ing Unified Parkinson's Disease Rating Scale (UPDRS)
motor scores [4].

POMDPs are models which provide a powerful frame-
work for decision theoretic planning of clinical actions.
The above finite and infinite horizon Markov decision
processes fall into the broader class of Markov decision
processes that assume perfect state information-in other
words, an exact description of the system. Numerous
researchers have been made for the type of MDPs with var-
iable discount rate see e.g [5-12]. Tests provide a more
accurate estimation of the true state of the patient, but are
subject to the error of tests. Extensions of MDPs, called
POMDPs have been developed to deal with imperfect
information [6]. In our paper we present a very effective
and efficient POMDP formulation to the treatment
options for patients with Parkinson's disease.

The average cost criterion is a popular criterion for optimi-
zation of stochastic dynamical systems over an infinite
time horizon. On the theoretical side Astrom [13] consid-
ered the discounted cost (DC) criterion in great details.
Commonly used method for studying the problem of
existence of solutions to the average cost dynamic pro-
gramming equation (ACOE) is the vanishing-discount
method, an asymptotic method based on the solution of
the much better understood discounted cost problem
[14,15]. It is well known, at least in the case of finite state
and action models, that if the ACOE admits a bounded

solution, then one such solution can always be obtained
as the limit of a sequence of differential discounted value
functions, as the discount factor tends to 1.

In section 2, we present the main clinical results for the
PD. Current medical therapies, although effective ini-
tially, become less efficient over time. The STN-DBS is an
effective treatment that considerably alleviates the severity
of signs and symptoms and improves the health status of
patients with PD. In section 3, of the paper the POMDP
model is described and some assumptions are provided.
Moreover we present the development of POMDP formu-
lation to the problem of treating patients with Parkinson's
disease, under Average Cost Criterion. PD is a both debil-
itating and costly. In section 4 we present the model
implementation using clinical data of 150 patients from a
major Hospital in Athens area. Relevant economic data
were taken from the medical records and costs were
derived from different Greek medical economic resources.
Costs were calculated from the perspective of the health-
care provider.

Protocols for Clinical Treatments decisions for Parkinson's 
disease
Patient Selection Criteria for Deep Brain Stimulation
The evolving evidence on the risks and benefits of DBS
warrants the careful selection of patients for this proce-
dure. Such selection is intended to ensure the identifica-
tion of patients most likely to benefit from DBS in the
presence of significant risks associated with the procedure.

The main criterion to determine if a patient with PD is eli-
gible for DBS is sensitivity to L-dopa. Responsiveness to
an L-dopa challenge test has been found to be a strong
predictor of DBS outcome; thus, it remains the main crite-
rion of eligibility for this surgery. The procedure for the L-
dopa challenge and measures of responsiveness are out-
lined in a diagnostic and methods core evaluation tool
called the CAPIT protocol (Core Assessment Program for
Intracerebral Transplantation) [16]. This protocol was
developed as a minimum methodological standard to
enable common practices between centres in the selection
of and evaluation of patients for, in this case, DBS.

The CAPIT protocol has 2 main sections. The first is a
description of the L-dopa challenge to be followed in
assessing responsiveness to the drug. The second portion
of the CAPIT protocol has a description of outcome meas-
ures to be included in the assessment that are based on the
UPDRS scale (version 3.0), a measure of overall motor
function. The UPDRS is a questionnaire that includes sec-
tions on motor function, ADL, and percentage of the wak-
ing day spent in good/poor function.
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Essential tremor
Essential tremor is the most common adult tremor disor-
der. Tremor is typically evident on both sides of the body.
Tremor occurs during voluntary movement, which is dis-
tinguished from tremor-predominant PD with symptoms
occurring only at rest. Furthermore, disease progression in
essential tremor typically results in an increase in intensity
of symptoms without a corresponding expansion of
symptoms, in contrast to the expansion of symptoms in
PD. This differential pattern in disease progression
between the 2 diseases is the main reason for the implan-
tation of a unilateral DBS device in essential tremor and a
bilateral device in PD (i.e. it may be sufficient to reduce
the tremor on the dominant arm in essential tremor, how-
ever, bilateral surgery may be necessary in some patients).
Unlike PD patients with refractory disease, patients with
essential tremor may stop drug therapy entirely if the
medications are not working.

Primary Dystonia
Dystonia is considered a syndrome of different causes,
and not a specific disease entity. The symptoms that char-
acterize this syndrome are muscle contractions with twist-
ing and odd posture. Primary dystonia, that which is
idiopathic or genetically determined, is the most common
form.

Therefore, either unilateral or bilateral DBS may be per-
formed, depending on the laterally of symptoms. The pri-
mary target for neurosurgery in the mid-1970s was the
thalamus, but with improvement of dystonic symptoms
in PD following pallidotomy, the globus pallidus has
become the brain site of interest for such symptoms.

Model development and formulation
POMDP is an appropriate technique for modelling and
solving such stochastic and dynamic decisions. We
present the POMDP model formulation in order to find
an optimal policy treatment for a patient with PD under
an average cost criterion.

A POMDP is typically defined as a six parameter tuple.
The six parameters together capture all aspects of medical
decision making. A Partially observable decision process
is:

• S is the set of physical state of a patient with Parkin-
son's disease. The states of a patient with PD are coded
with the numbers 1,2,3. Hence S = {1,2,3}.

1: A patient has mild adverse events. The main risk
factor for PD is increasing age, with only 5% to
10% of patients having disease onset the age 40.

For patients with mild adverse events, pharmaco-
therapy is the usual action.

2: A patient has moderate events

3: A patient is down.

• At any given time period, the decision maker selects
one of the following actions. The actions for the ther-
apy treatment of a patient with PD are coded with the
numbers 0, 1. Hence A = {0, 1} is the set of actions
and at is the decision at the stage t.

α = 0: is the Medical treatment with incomplete
monitoring.

Medical Treatment for PD aims to improve motor
function and quality of life. Clinical management
varies with disease severity and the age of the
patient. The severity of disease is defined as the
degree of functional disability, whereas the age of
the patient is important with respect to the adverse
effects of the drug being prescribed [17].

The length of follow-up in these studies ranged
from 2 to 6 years [18-20].

α = 1: The action of Surgical Treatment. Standard
care for patients with advanced PD includes mod-
ifications in their drug regimen, and the possible
introduction of drug holidays. Drug holidays are
phases where drug therapy is eliminated and then
reintroduced at possibly lowered doses. For
patients with motor fluctuations that are not ade-
quately controlled by drug therapy, surgical inter-
vention in the form of DBS may be an option.
Nevertheless, evaluation of patient eligibility for
DBS surgery must follow specific guidelines and is
best done within a multidisciplinary expert centre.
Expert consultation indicates that about 10% to
15% of all patients with PD become candidates for
DBS. (Personal communication with clinical
expert, February 2005).

• T: S × A × S → [0,1]: is the transition function, and
represents the dynamic of the problem. Operating the
patient with Parkinson's disease causes it to deterio-
rate statistically over time, and when the Surgical Treat-
ment is chosen, the patient's state may be improved.
This is reflected in the state transition probabilities,
which are selected as follows. The state of the patient
undergoes deterioration according to a stationary dis-
crete-time Markov chain having a known transition
law. The core process {xt, t = 0,1,2, ...} is a discrete-
time Markov process.

POMDP S A T R c= , , , , , ,Θ β
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Let pij denote the 1-step transition probability from
state i to state j.

. The transition matrix

 is time invariant and shows the effect of the

treatment upon the patient state. We apply the EM algo-
rithm [21] to estimate the above transition probabilities.
Alternatively we can apply cohort studies.

� Θ = {1,2,3}, a set of possible observations. The
main observations (Motor function, including
tremor, ADL) are coded with the numbers 1,2,3. At
each time period, the state of the patient is not
known and is monitored incompletely by some
monitoring mechanism under Clinical Examina-
tions (CE). (CE) are characterized by the fact that
they yield the opportunity to observe one or more
external state variables. The results of (CE) may
supply a better idea of the true state of the patient,
but are subject to the error of the tests. Clinical
presentation of PD may include slowness in activ-
ities of daily living (ADL) such as dressing, walk-
ing, and doing household chores, difficulty and
taking longer to get up from a chair; reduced arm
swing; flexed posture and a shuffling gait (bradyki-
nesia); rigidity; and cogwheeling (ratchet-like feel
of muscles) on passive movement.

• The probabilistic relation between observation proc-
ess zt and core process xt is given by the 3 × 3 time
invariant observation matrix. R. It's assumed that the
probabilistic relation between the state of the system
and the outcome of the monitoring is prescribed by
the following known conditional probability:

riθ = Pr{the outcome of the monitoring is level θ|the
system is in state i},

i = 1, 2, 3 and θ = 1, 2, 3.

• The cost structure considered here is as follows: ca(i),
where c(i, a) is the scalar valued cost accrued, when the
current state is i ∈ S and action is α ∈ A. The costs c(i,
α) for various kinds of combinations of π ∈ ∏ and a ∈
A are 0 ≤ c(1,0), ≤ c(2,0), ≤ c(3,0), ≤ c(x,0)< ∞, ∀ x ∈
S. The above are valid because in the early stage of Par-
kinson's disease patients' symptoms are markedly alle-
viated by dopaminergic therapy. However at later
stages of the disease motor fluctuations and or dyski-
nesias may develop which result in a major disability
and a considerable decrease in the quality of life of

patients. The cost of therapy cannot be judged without
also considering the outcome of therapy and cost-
effectiveness analysis links these two measures explic-
itly. As outcome measurement we used the UPDRS to
evaluate the clinical endpoint as well as the sickness
impact profile to evaluate the health status following
DBS. The cost-effectiveness of DBS are evaluated by
calculating the incremental costs of patients treated
with DBS against the drug costs at baseline using the
UPDRS as an outcome measurement. Using a decision
analytic model from a societal perspective with a one
year time horizon [22] evaluated the immediate
agents preferences or rewards (costs).

• β is the discount factor of future costs arised in every
next step of the model. β ∈ (0,1).

Although the state of the core process is not known
with certainty, it is possible to calculate the probability
that the patient is in a given state. In particular we
define:

The vector π(t) = (π1(t), π2(t), ..., πN(t)) is called infor-
mation vector, and the space of all such vectors,∏, is
called the information space.

It is well known that π(t) is a sufficient statistic [14,5].
More precisely, π(t) summarizes all of the necessary
information of the history of the process for choosing
an action at time t.

Since control policies are based on the information
vectors the POMDP can be recast as a completely
observable equivalent MDP with a continuous state
space as given by Sondik [5]. If the information vector
at time t is π and an alternative α is selected, and if an
output θ results, then the new updating information
vector π(t+1) is given by T(π|θ, α).

By Bayes' rule.

 is the probability of receiv-

ing observation θ at stage t +1, given that π(t) and α is
the action selected at stage t.

p pr x j x it tij
a

t= = = =+[ / , ]1 α α

P pα = ( )ij
a

r x i i S Ati t tzθ
α θ α α α= = = = ∈ ∈−Pr[ / , ], , .1
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 be the diagonal matrix having  as its j-th diag-

onal term and zeros for all off-diagonal terms. Assum-
ing 1 = col {1, ..., 1}.

The objective of a POMDP is to find an optimal policy
among the admissible policies such that it minimizes a
given performance index, typically the total expected dis-
counted cost to be accrued over the infinite horizon, or
the expected long-run average cost, conditioned on the a
priori π(0). These costs are defined in terms of the state xt
for each admissible strategy, δ, and information vector
ρ(0) of the initial state by some performance index, see
Appendix 1 for details.

We assume that cα = {c(i, α)}, ,  are

stage invariant arrays.

Model implementation and study outcome evaluation
In order to illustrate the solution procedure for the prob-
lem we present, we tested the model accuracy using clini-
cal data from a cohort of 150 patients for a time of two
years from a major public General Hospital in Athens
Area. The parameters used in the study are given as fol-
lows. S = {1,2,3}, Θ = {1,2,3}, A = {0,1}, discount factor
β = 0.9. The patient model evolves in the following man-
ner: The uncertainty of the patient health state with PD
arises from the inability to know exactly the level of dete-
rioration under clinical examinations and diagnostic pro-
cedures because we have the error of tests Therefore the
state of the patient is partially observed, an action is taken,
a reward is received (or cost incurred), and the patient
transitions to a new state according to a known probabil-
ity distribution.

The transition matrices are the following for α = 0 and α
= 1 respectively:

The observation matrices are the following for a = 0 and a
= 1 respectively:

Hence,

In this portrayal, the space of possible π vectors with three
components is represented by an equilateral triangles,
with each point in the triangle corresponding to a possible
state (belief state). For each information vector π = (π1, π2,
π3), the perpendicular distance from the point to the side
opposite the i-th vertex is just equal to πi (i = 1,2,3). Thus,
points closer to the i-th vertex correspond to states of
information in which the process is believed more likely
to be in state i.

The study estimated direct healthcare costs from the per-
spective of the Greek statutory health insurances. The
expenses for drugs were calculated according to official
Greek Price Lists. Greek health insurance systems reim-
burse the costs for outpatient care with a flat rate for each
quarter, irrespective of continued revisits during the quar-
ter. Thus, costs for out patient care were calculated by mul-
tiplying the flat rate for each quarter by the number of
quarters that the patient could have presented several
times a quarter in the outpatient clinic while the health
insurance only reimbursed the flat rate.

The initial information vector is π(0) = (0.4,0.5,0.1). The
algorithm is a novel of a policy iteration. We begin with a

policy δ0, evaluate that policy by solving a set of linear

equations to find the value of this policy . Use this
value to choose the action that minimizes the equations
in (2.10) to perform a policy improvement step, and

determine the next policy δ1. This process is continued
until identical policies are found in subsequent iterations
Sondik [5]. Optimal control-limit policy: A line segment

connecting information vectors π' = (0.5951, 0.4049,0)

and π" = (0.25, 0,0.75). For all information states (belief-
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states) to the right region we take surgical treatment. Oth-
erwise we take medical treatment (see Figure 1).

Several studies have shown that dopaminergic medication
can be considerably reduced after STN-DBS [23,24] Sug-
gesting that costs for pharmacological treatment should
also decrease. Also it has been demonstrated that nursing
home admissions were less frequent in patients who have
had STN-DBS compared to medically treated patients
[16]. Also several clinical studies have shown the clinical
effectiveness of STN-DBS in improving Parkinsonian
symptoms [22]. The benefit of STN-DBS on motor-func-
tion allowed a major improvement in all aspects of qual-
ity of life, especially the social functioning subscale, as
already reported [23]. The present mathematical model
confirms these results. According to this model the surgi-
cal action is cost effective confirming previously pub-
lished clinical models and can be applied for patients with
PD relatively early (e.g for moderate events) with eco-
nomic benefits, quality of life and low risk.

Conclusion and proposals
The clinical management requires the ability to predict the
interplay between the natural history of diseases and the
effects of intervening actions over time. Often, such pre-
dictions cannot be made with certainty and trade-offs
have to be made between the expected benefits of current
and future decisions. In our paper we presented how par-
tially observable Markov decision processes can be used to
formalize the management of a patient with Parkinson's
disease, providing an explicit representation of the clinical
states, the management strategy employed and the objec-
tives of treatment. Therefore, the final aim of our research

is to provide analyses and methods that can inform clini-
cal studies. Our model crates a simulation of the actual
disease monitoring processes. Consequently, our model
should only be used complementary in the decision mak-
ing process. As a fact, the implementation of our model in
the real clinical practice, confirmed that it has the ability
to sufficiently estimate the decisions taken by the clini-
cians. However, we don't suggest that our model should
directly effect immediate changes in the treatment policy
for patients with PD. Finally, we believe that our model
provides an efficient and supplementary tool for deter-
mining a feasible set of treatment options to be examined
in the clinical practice.
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Appendix 1
For the POMDP model we apply the following main per-
formances index.

Discounted-cost (DC):

Average-cost (AC):

respectively, and in terms of the information vector ρ(t)
by:

and

The equivalence, in the sense of equal optimal costs for
each π(0) ∈ ∏, of the optimization problems defined
using criteria (1) and (2), and similarly for problems spec-
ified using (3) and (4). Since the state of the patient is not
known at time t, we will work with Jβ(δ, .) and J(δ, .).

Now we define:

Then, Vβ (π) is the total expected discounted cost accrued
when an optimal policy is selected, given that the initial
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The optimal policyFigure 1
The optimal policy.
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information vector is ρ, and future costs are discounted at
rate β. It is well known that Vβ (π)is the unique solution of
the functional equation:

When computing optimal policies in the infinite horizon
case, we need only consider stationary policies [20]. A sta-
tionary policy is denoted by(δ)∞ = (δ, δ, ...). Similarly,
define:

Optimal-average cost: , ρ ∈ Π. Then, g

is the expected optimal average cost, and it satisfies the
functional equation:

A strategy δ* (if it exists), is optimal if it is valid

For the average cost criterion, the limit of the expected
average cost may not exist for some or all policies. Given
the results above, naturally there has been considerable
interest in finding conditions which guarantee the exist-
ence of a bounded solution (g, h) to the ACOE. It can be
shown that a necessary condition for the existence of a
bounded solution to the ACOE is that the following uni-
form boundness condition holds.

(UB) There is a constant L > 0 such that: [14]

Theorem A: Suppose there is a bounded solution (g, h) to the
ACOE. Then condition (UB) is satisfied with L = 2.span(h),
where

Proof. For the case when S, A are both finite, the result
above can be inferred.

Various necessary conditions for the existence of a solu-
tion to the ACOE have been proposed in the literature.

Theorem B: If Assumption (UB) holds, then there exist a
bounded, concave and continuous function h: Π →  and

an optimal cost g such that (g, h(.)) is a solution of the
dynamic equation:

Proof. Ross [6]

Assumption (UB) can be checked to hold for the above
problem, where we have a mixed observation possibility
since both partial and complete observation can occur.
Then there exist a bounded, concave and continuous func-
tion h: Π →  and an optimal cost g such that (g, h(.)) is a
solution of the dynamic equation:

, by theorem (B).

For the solution of the above equation we take the algo-
rithm of Sondik [5] or the method of Goulionis et.al. [11].
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