Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Comprehensive evaluation of DNA barcoding for the molecular species identification of forensically important Australian Sarcophagidae (Diptera)

Kelly A. Meiklejohn A D , James F. Wallman A , Stephen L. Cameron B and Mark Dowton C
+ Author Affiliations
- Author Affiliations

A Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, NSW 2522, Australia.

B Biogeosciences Discipline, Faculty of Science & Technology, Queensland University of Technology, Qld 4001, Australia.

C Centre for Medical Bioscience, School of Biological Sciences, University of Wollongong, NSW 2522, Australia.

D Corresponding author. Email: km988@uowmail.edu.au

Invertebrate Systematics 26(6) 515-525 https://doi.org/10.1071/IS12008
Submitted: 8 February 2012  Accepted: 13 September 2012   Published: 19 December 2012

Abstract

Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, was evaluated in a pilot study for discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated barcoding for a larger taxon set of 588 Australian sarcophagids. In total, 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be identified, but were included nonetheless as six unidentifiable taxa. A neighbour-joining tree was generated and nucleotide sequence divergences were calculated. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as monophyletic (99.2% of cases), with bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 1.12% and 2.81–11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for molecular identification of Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.

Additional keywords: COI, forensic entomology.


References

Aljanabi, S. M., and Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 4692–4693.
Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.CrossRef | 1:CAS:528:DyaK1cXhsFWrsA%3D%3D&md5=335f2d0cda308ea5047e226c8b6779ddCAS |

Amendt, J., Krettek, R., and Zehner, R. (2004). Forensic entomology. Naturwissenschaften 91, 51–65.
Forensic entomology.CrossRef | 1:CAS:528:DC%2BD2cXhsFajsr8%3D&md5=bc00bf1b2419c556948e1e3e07117a66CAS |

Ball, S. L., Hebert, P. D. N., Burian, S. K., and Webb, J. M. (2005). Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society 24, 508–524.

Blackith, R. M., and Blackith, R. E. (1992). Collecting sarcophaginae flies on summits. Antenna 16, 57–59.

Boehme, P., Amendt, J., Disney, R. H. L., and Zehner, R. (2010). Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. International Journal of Legal Medicine 124, 577–581.
Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes.CrossRef |

Catts, E. P. (1992). Problems in estimating the postmortem interval in death investigations. Journal of Agricultural Entomology 9, 245–255.

Catts, E. P., and Goff, M. L. (1992). Forensic entomology in criminal investigations. Annual Review of Entomology 37, 253–272.
Forensic entomology in criminal investigations.CrossRef | 1:STN:280:DyaK387ntFCnsg%3D%3D&md5=345c4d3382fb0e1e1bca4193d35e8f4cCAS |

Draber-Monko, A., Malewski, T., Pomorski, J., Los, M., and Slipinski, P. (2009). On the morphology and mitochondrial barcoding of the flesh fly Sarcophaga (Liopygia) argyostoma (Robineau-Desvoidy, 1830) (Diptera: Sarcophagidae) – an important species in forensic entomology. Annales Zoologici 59, 465–493.
On the morphology and mitochondrial barcoding of the flesh fly Sarcophaga (Liopygia) argyostoma (Robineau-Desvoidy, 1830) (Diptera: Sarcophagidae) – an important species in forensic entomology.CrossRef |

Ekrem, T., Stur, E., and Hebert, P. D. N. (2010). Females do count: documenting Chironomidae (Diptera) species diversity using DNA barcoding. Organisms, Diversity & Evolution 10, 397–408.
Females do count: documenting Chironomidae (Diptera) species diversity using DNA barcoding.CrossRef |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.CrossRef | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS |

Hebert, P. D. N., Ratnasingham, S., and DeWaard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B: Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.CrossRef | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=f8aa7a07473adc3c030b9d330ed5a0afCAS |

Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14 812–14 817.
Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator.CrossRef | 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=0ae4f5812affc4879a365a936524c001CAS |

Hogg, I. D., and Hebert, P. D. N. (2004). Biological identifications of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology 82, 749–754.
Biological identifications of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes.CrossRef |

Kimura, M. (1980). A simple model for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple model for estimating the evolutionary rates of base substitutions through comparative studies of nucleotide sequences.CrossRef | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=78555c3dc7e755aed13a5a2a8c5b8747CAS |

Lopes, H. S. (1954). Contribution to the knowledge of the Australian sarcophagid flies belonging to the genus “Tricholioproctia” Baranov, 1938 (Diptera). Publication of Academia Brasileira de Ciencias 26, 234–276.

Lopes, H. S. (1959). A revision of Australian Sarcophagidae (Diptera). Studia Entomologica 2, 33–67.

Matz, M. V., and Nielsen, R. (2005). A likelihood ratio test for species membership based on DNA sequence data. Philosophical Transactions of the Royal Society B. Biological Sciences 360, 1969–1974.
A likelihood ratio test for species membership based on DNA sequence data.CrossRef | 1:CAS:528:DC%2BD2MXhtlSjsrbF&md5=a8664b83055c4ffbf9901cea8ef6bca5CAS |

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. L. (2006). DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55, 715–728.
DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.CrossRef |

Meier, R., Zhang, G., and Farhan, A. (2008). The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biology 57, 809–813.
The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification.CrossRef |

Meiklejohn, K. A., Wallman, J. F., and Dowton, M. (2011). DNA-based identification of forensically important Australian Sarcophagidae (Diptera). International Journal of Legal Medicine 125, 27–32.
DNA-based identification of forensically important Australian Sarcophagidae (Diptera).CrossRef |

Moulton, M. J., Song, H., and Whiting, M. F. (2010). Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Molecular Ecology Resources 10, 615–627.
Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta).CrossRef | 1:CAS:528:DC%2BC3cXpsFSltrw%3D&md5=fe60bad03250a84b33bd258ba2993fc3CAS |

Nelson, L. A., Wallman, J. F., and Dowton, M. (2007). Using COI barcodes to identify forensically and medically important blowflies. Medical and Veterinary Entomology 21, 44–52.
Using COI barcodes to identify forensically and medically important blowflies.CrossRef | 1:STN:280:DC%2BD2s7nsV2ksQ%3D%3D&md5=0fe3ffacc4d2799f46e362ff3c364b11CAS |

Nielsen, R., and Matz, M. V. (2006). Statistical approaches for DNA barcoding. Systematic Biology 55, 162–169.
Statistical approaches for DNA barcoding.CrossRef |

Pape, T. (1996). ‘Catalogue of the Sarcophagidae of the World (Insecta: Diptera).’ (Associated Publishers: Gainesville, FL.)

Pape, T., McKillup, S. C., and McKillup, R. V. (2000). Two new species of Sarcophaga (Sarcorohdendorfia) Baranov (Diptera: Sarcophagidae), parasitoids of Littoraria filosa (Sowerby) (Gastropoda: Littorinidae). Australian Journal of Entomology 39, 236–240.
Two new species of Sarcophaga (Sarcorohdendorfia) Baranov (Diptera: Sarcophagidae), parasitoids of Littoraria filosa (Sowerby) (Gastropoda: Littorinidae).CrossRef |

Pons, T., Gonzalez, B., Ceciliani, F., and Galizzi, A. (2006). FlgM anti-sigma factors: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence–structure–function relationships. Journal of Molecular Modeling 12, 973–983.
FlgM anti-sigma factors: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence–structure–function relationships.CrossRef | 1:CAS:528:DC%2BD28XhtFOitL%2FE&md5=081e2bd69ae91908609d338482c5a1faCAS |

Rivera, J., and Currie, D. C. (2009). Identification of Nearctic black flies using DNA barcodes (Diptera: Simuliidae). Molecular Ecology Resources 9, 224–236.
Identification of Nearctic black flies using DNA barcodes (Diptera: Simuliidae).CrossRef | 1:CAS:528:DC%2BD1MXlslOjt74%3D&md5=9607a1c6e0ee3ec951bc52e304804e96CAS |

Shewell, G. E. (1987). Sarcophagidae. In ‘Manual of Nearctic Diptera, Vol. 2’. (Eds J. F. McAlpine, B. V. Peterson, G. E. Shewell, H. J. Teskey, J. R. Vockeroth and D. M. Wood.) pp. 1159–1186. (Research Branch, Agriculture Canada: Ottawa, Canada.)

Song, H., Buhay, J., Whiting, M. F., and Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America 105, 13 486–13 491.
Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified.CrossRef | 1:CAS:528:DC%2BD1cXhtFChs7vP&md5=3a04f63265faa303944ae4d7dc4d61fdCAS |

Swofford, D. L. (2001). ‘PAUP* – Phylogenetic Analysis Using Parsimony (* and Other Methods).’ (Sinauer Associates, Inc.: Sunderland, MA.)

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24, 1596–1599.
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0.CrossRef | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=d2738b052fcd210827e9d4fc638cc7d5CAS |

Tavares, E. S., and Baker, A. J. (2008). Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evolutionary Biology 8, 81–95.
Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds.CrossRef |

Ward, R., Zemalk, T., Innes, B., Last, P., and Hebert, P. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B. Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.CrossRef | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=ec74be10b2d9d122ee3aaa9703b7defcCAS |

Wells, J. D., Pape, T., and Sperling, F. A. H. (2001). DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). Journal of Forensic Sciences 46, 1098–1102.
| 1:CAS:528:DC%2BD3MXntFGks7c%3D&md5=d9b9ab289b3cb6803bd806576f024d10CAS |

Whitworth, T. L., Dawson, R. D., Magalon, H., and Baudry, E. (2007). DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings of the Royal Society – Biology 274, 1731–1739.
| 1:CAS:528:DC%2BD2sXosVans7k%3D&md5=78b3201e91b8dfa011fecf87056696bcCAS |

Yeates, D. K., Seago, A., Nelson, L., Cameron, S. L., Joseph, L., and Trueman, J. W. H. (2011). Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209–217.
Integrative taxonomy, or iterative taxonomy?CrossRef |

Zehner, R., Amendt, J., Schutt, S., Sauer, J., Krettek, R., and Povolny, D. (2004). Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae). International Journal of Legal Medicine 118, 245–247.
Genetic identification of forensically important flesh flies (Diptera: Sarcophagidae).CrossRef |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (212 KB) Export Citation Cited By (13)

View Altmetrics