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Aetiological confirmation of respiratory tract infections 
in patients facilitates appropriate antimicrobial use and 
infection control procedures. From a public health 
perspective, the laboratory confirmation of influenza 
allows assessment of circulating viruses, community 
attack rates and the efficacy of vaccination programs, while 
assisting modelling as part of pandemic preparedness 
planning. Rapid antigen and immunofluorescent antigen 
tests are relatively insensitive in detecting pandemic 
(H1N1) 2009 influenza compared to seasonal subtypes, 
and influenza subtype-specific nucleic acid amplification 
tests should be used as the ‘gold-standard’ for diagnosis. 
Pathogen-specific serological testing aids the retrospective 
diagnosis of infection, and is used in seroprevalence 
studies. Influenza virus isolation is needed for vaccine 
assessment and formulation. Although some challenges 
surrounding diagnostic testing during pandemic (H1N1) 
2009 have been resolved, others remain; this may test 
laboratories again in future pandemics.

Pandemic (H1N1) 2009 influenza (hereafter pH1N1), the first 
influenza pandemic of the 21st century and the first in 41 
years, provided a significant challenge to the community and 
health authorities. The rapid spread of the pandemic required 
the development of high-throughput pH1N1-specific laboratory 
tests to provide timely information demanded by clinicians, 
public health authorities and policy-makers. The laboratories 
were confronted with an increase in testing demand that far 
exceeded predictions, and which stretched then overwhelmed 
the resources of many. Furthermore, some of the most significant 
problems had not been anticipated in the pre-pandemic planning 
process and strategies to deal with them could often not be 
implemented1,2.

The Australian Health Management Plan for Pandemic Influenza 
(AHMPPI) is a national health plan that outlines the management 
of pandemic influenza, including the role of laboratory testing 
during the different pandemic phases3. Each state and territory 
had developed plans for dealing with the predicted test 
demand, usually by centralisation of most testing in state 
reference laboratories, though many were able to use other 

laboratories that had suitable capacity and expertise. While 
these arrangements were criticised in some jurisdictions4,5 due 
to increased turnaround times, it was clear that there were a 
number of complex factors contributing to problems1,6.

There were multiple reasons for the delays, including the 
overwhelming number of tests requested for surveillance of 
disease prior to significant community transmission1,2, and testing 
of individuals with clinically mild disease during the DELAY and 
CONTAIN phases of the pandemic. Other issues included the 
long transit times between the point of collection and receipt in 
the reference laboratory; inappropriately collected specimens; 
incorrectly filled out or missing request forms; difficulties in 
identifying urgent samples; the lag between result validation 
and notification to public health units; the requirements for 
increased data collection and reporting; and the lack of flexible 
electronic data transfer systems.

Despite the recommendation that laboratory testing be confined 
to those with, or at risk of, severe influenza infection during the 
PROTECT phase (declared on 17 June 2009), high numbers of 
specimens requesting pH1N1 testing were still being received 
in laboratories. As the first pandemic wave coincided with the 
southern hemisphere’s winter season, the sensitive but non-
specific clinical case definition used to guide laboratory testing 
for influenza (for example, fever and cough plus one other 
respiratory symptom was used in NSW) dictated that a significant 
number of specimens were tested. Diagnostic testing was also 
complicated by the fact that the peak of pH1N1 activity coincided 
with the peak activity of other winter respiratory viruses (including 
respiratory syncytial virus and seasonal influenza). Different 
algorithms incorporating various testing modalities such as 
nucleic acid amplification tests (NAAT), antigen detection tests, 
pathogen-specific serology and viral cultures were employed 
throughout the pandemic. Furthermore, there was a need to 
rapidly develop, optimise and validate new NAAT while assessing 
the performance of existing seasonal influenza tests in detecting 
pH1N1.

Much of the additional workload fell upon a relatively small 
number of staff, especially senior staff with the expertise 
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Table 1. Sensitivity and minimum turnaround times of tests for pandemic (H1N1) 2009 influenza. 

Type of test Sensitivity Specificity
Minimum turnaround time (post-
receipt in the laboratory)

Rapid antigen test 18%–77% 100% 15–30 minutes

Immunofluorescent antigen test 47%–93% 97% 2–4 hours

Nucleic acid amplification test 98% 100% 4–6 hours

Viral isolation 89% 100% 2–7 days

Serology on convalescent serum Up to 100% Up to 100% 18–24 hours

required to oversee the combined burdens of test development 
and delivery, while also interacting with clinicians and health 
authorities. Due to the special skills required, it was difficult 
to find external staff who were able to assist, or to find time to 
train those without the skills. Staff fatigue due to excessive work 
hours and absenteeism during a period of high stress further 
compromised the workflow within the laboratories.

NAAT were used as the definitive test for pH1N1 as these 
had been determined to be the preferred test for novel 
influenza A subtypes3. Early data indicated that the antigen 
detection tests were insensitive, and later studies confirmed 
the decreased sensitivity of rapid antigen tests (RAT) and direct 
immunofluorescent antigen tests (IFA) in detecting pH1N1 
(17.8%–53.4% and 46.7%–93% respectively)7-10. The sensitivity 
of both RAT and IFA was affected by patient age and sample 
type11; improved RAT sensitivity was noted in the paediatric 
population (66.2% in combined nasopharyngeal swabs and 
84.1% in nasopharyngeal aspirates), suggesting that RAT may be 
a ‘reasonable’ test to exclude pH1N1 in nasopharyngeal swabs 
collected from young children in non-critical situations12. Nose 
and/or throat swabs are easier and more comfortable to collect 
compared to nasopharyngeal aspirates, and have been shown 
to be equivalent or superior to nasopharyngeal aspirates for the 
detection of respiratory viruses by NAAT, including pH1N113,14. 
Table 1 compares the performance characteristics of the different 
tests used in detecting pH1N1. Despite the development of new 
pH1N1-specific RAT that have improved the sensitivity of pH1N1 
detection to 77%15, NAAT remains the test of choice in diagnosing 
acute pH1N1.

Various NAAT were employed, usually real-time assays directed at 
non-subtype-specific influenza matrix gene targets and/or pH1N1 
specific haemagglutinin gene16, as well as commercial multiplex-
tandem PCR assays targeting influenza and other respiratory 
viruses. Although RAT were significantly less sensitive than 
NAAT, they were used by some public and private laboratories 
to screen for pH1N1 due to their high positive predictive 
value, particularly during the PROTECT phase when there was 
widespread community transmission. NAAT were required for 
confirmation and subtyping of RAT-positive specimens, and for 
excluding pH1N1 in RAT-negative specimens.

However, even NAAT on upper respiratory tract samples were 
negative in up to 40% of critically ill patients with pH1N1 
pneumonia and positive lower respiratory tract samples17,18. 
Also, in these patients, at least 23% had bacterial and/or viral 
co-infections19. Multiplex-tandem RT-PCR allowed simultaneous 

detection of other co-circulating respiratory viruses; bacterial 
co-infections were suggested by high C-reactive protein or 
procalcitonin levels20 and confirmed by positive cultures (blood, 
sputum, bronchoalveolar lavages and/or endotracheal aspirates) 
or urinary antigen detection tests to guide antimicrobial use 
following initial empirical broad-spectrum antibiotic therapy21.

pH1N1-specific haemagglutination inhibition (HI) assays 
performed on paired acute and convalescent sera may also 
assist the retrospective diagnosis of severe influenza in NAAT-
negative cases22. Although influenza viral culture was performed 
during the pandemic, it is no longer the ‘gold-standard’ for 
diagnosing influenza infection as it is less sensitive than NAAT, has 
longer turnaround times, poses biosafety and biocontainment 
challenges, and requires specialised laboratory equipment and 
personnel23. However, isolates are needed to monitor antigenic 
drift, assess potential vaccine changes, and to monitor antiviral 
resistance. Worldwide, this is undertaken by the World Health 
Organization (WHO) Global Influenza Network, which consists 
of five Collaborating Centres and some 110 National Influenza 
Centres (NIC). Australia is well-served by this system, with 
a WHO Collaborating Centre in Melbourne and three NIC 
– in Sydney (ICPMR, Westmead), Melbourne (VIDRL) and 
Perth (PathWest). These, other laboratories in the Australian 
Public Health Laboratory Network (PHLN) and a number of 
other laboratories in Australia and in the Asia-Pacific region 
contribute influenza strains to the WHO Collaborating Centre in 
Melbourne24.

The true incidence of pH1N1 during the first pandemic wave 
in Australia remains uncertain. In 2009, there were 37,636 
laboratory confirmed cases and 191 deaths from pH1N1; 6767 
cases and 22 deaths were noted in 2010 (up to 5 November)25. 
However, this underestimates the true community attack rate as 
laboratory confirmation of suspected influenza was not universal, 
particularly during the PROTECT phase. Two seroprevalence 
studies using HI tests undertaken after the first pandemic 
wave have suggested an overall community rate of 28.4% and 
22% in NSW and Australia respectively. This varied according 
to different age groups and geographic locations26,27. Higher 
infection rates were observed in the younger population and 
urban centres. However, the pre-pandemic seroprevalence rate 
of pH1N1 in both studies was 12.8% and 12%, suggesting a “true” 
population infection rate of 10–15.6%. This is similar to the 
seroconversion rate of 13% and 14.6% in the Singaporean general 
community28 and in the HIV-infected population in Western 
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Sydney respectively29. The ideal way to determine true pH1N1 
seroincidence is to demonstrate individual seroconversion as 
in these studies, but appropriate specimens are usually only 
available fortuitously and in small numbers in retrospective 
studies. Another serosurvey of children and pregnant women 
in Western Australia (subtracting the pre-pandemic from post-
pandemic seroprevalence rates) identified that 25.4% of children 
aged 1–4, 39.4% of children aged 5–19 and 10.2% of pregnant 
women aged 21–45 years were infected with pH1N130.

Leading into the southern hemisphere’s influenza season of 
2010, immunity to pH1N1 in the Australian population was at 
least 40.1–46.5% (post-pandemic seroprevalence of 22–28.4% 
plus the estimated pH1N1 monovalent vaccine uptake of 18.1% 
up to the end of February 201031). This may in fact be higher 
if one includes the uptake of the pH1N1-containing trivalent 
seasonal influenza vaccine (available as of mid-March 2010). 
Elevated pH1N1-specific antibodies were most likely to be 
demonstrated in the elderly Australian population, with 37.5% 
of individuals aged between 60 and 101 years having HI titres 
≥1:40. The prevalence of cross-reacting antibody was highest in 
the oldest age-group (≥85 years), with more than 60% having HI 
titres of ≥1:4032.

The observation that pH1N1 significantly displaced seasonal 
influenza A/H1N1 and A/H3N2 to become the dominant influenza 
strain following the first pandemic wave33 was further confirmed 
from typing data this year. Of 11,317 cases of influenza in 2010 
(up to 5 November), 6767 (60%) were pH1N1, although 3247 
(29%) untyped influenza A cases are also likely to be pH1N1 
given the negligible activity of other influenza A subtypes25. Pre-
existing immunity in the population from prior pH1N1 infection 
and vaccination is likely to have accounted for the decreased 
number of clinical and laboratory-confirmed cases in 2010.

WHO has reported only 304 oseltamivir-resistant (but zanamavir-
susceptible) pH1N1 viruses worldwide (up to 18 August 2010)34, 
with all but one virus possessing the H275Y mutation (confirmed 
by either neuraminidase [NA] allele-specific gene RT-PCR or 
sequencing of the NA gene product), or by phenotypic testing to 
determine the oseltamivir IC50. There have been at least 11 cases 
of oseltamivir-resistant pH1N1 detected in Australia since the 
beginning of the pandemic35. Resistant viruses have been isolated 
from immunocompromised patients (solid organ transplants or 
haematological malignancies) receiving prolonged oseltamivir 
treatment or primary prophylaxis36-38. It is important to continue 
monitoring with both genotypic and phenotypic testing for 
oseltamivir-resistant pH1N1 given the recent experience with the 
previous seasonal A/H1N1 strain39.

In conclusion, accurate and rapid identification of pH1N1 
significantly impacted individual patient and public 
health management during the first pandemic wave. Good 
sample collection, together with rapid and reliable testing 
methodologies, remains the cornerstone for accurate diagnosis. 
Precise epidemiologic data is crucial for pandemic preparedness 

planning to limit the impact of pandemic influenza.
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In April 2009 a novel virus strain appeared which would 

cause the first influenza pandemic of the 21st century. 

This pandemic was the first to occur in an era where 

bioinformatic technologies contributed to the response 

to this virus; still, the creation of a vaccine relied largely 

on existing egg-based technology. The ongoing threat of 

a H5N1 pandemic spurred the development of strategies 

to rapidly produce a pandemic vaccine. These plans 

were implemented and allowed CSL and Australia to 

conduct the first clinical trials and produce one of the 

first 2009 pandemic vaccines. However, new candidate 
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influenza vaccine viruses often present challenges to 

manufacturing a new vaccine. This pandemic virus 

was no exception. Being in the post-pandemic phase, 

it is important to review lessons learned to improve 

our response to future pandemics. In hindsight, the 

production of a pandemic vaccine is similar to that 

of seasonal influenza vaccines, yet the urgency of the 

pandemic response compresses timelines. This report 

explores those timelines and implications for producing 

a pandemic vaccine for Australia.
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