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Methanogenic archaea resident in themammalian gastroin-

testinal tract have long been recognised for their capacity to

participate in interspecies hydrogen transfer,with commen-

surate positive effects on plant biomass conversion. Howev-

er, there is also stillmuch to learnabout thesemethanogenic

archaea in regards to their metabolic versatility, host adap-

tation, and immunogenic properties that is of relevance to

host health and nutrition.

Methane, man and best laid plans
The methane club has an exclusive membership, principally

restricted to the Domain Archaea and more specifically, the

Euryarchaeota. Five orders of methanogens have long been recog-

nised: the Methanopyrales, Methanococcales, Methanobacteriales,

Methanomicrobiales, andMethanosarcinales1.However, themember-

ship has recently been expanded to include the Methanocellales2

as well as the provisionally named ‘Methanoplasmatales’3. Members

of the methane club are very popular, invited to join virtually all

anaerobic microbial communities and especially those where

sulphate is limiting. Popular hangouts includemoist soil biomes, fresh

water sediments and rice paddies, landfills, the gastrointestinal tracts

of invertebrate and vertebrate animals, anaerobic lagoons and waste

management facilities4–6. Indeed, the number and distribution of

these hangouts have dramatically increased in recent decades in

response to human population growth and urbanisation, as well as

the intensification of agriculture to feed a hungry world; but the

hangoverhasarrived.Wearenowbeingchallengedtoreducemethane

gas emissions, and in particular, methane emissions from livestock

production systems, which are attributed with producing ~20% of

global methane emissions7, in response to global concerns about our

impacts on the environment and climate change. Additionally, the

resurgent interest in themicrobiota we share our body with, and their
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impacts on our health and well-being, extends to the methane club8.

For these reasons, there is a renewed interest in gut methanogens,

but is it more of the same or something new? We contend that there

is still much to be learned about members of the methane club

and their behaviour in the digestive tracts of animals and man, from

beginning to end.

Separating the sheep from the goats: methane

and livestock
As herbivores, ruminants rely upon their microbial communities

within the rumen-reticulum to not only deconstruct plant biomass,

but provide the schemes of anaerobic fermentation necessary to

support the formation of protein-yielding and energy-yielding

nutrients such as microbial biomass and short chain fatty acids9,10.

Methanogens have long been recognised to support these process-

es via minimising pH2, with the concept of ‘interspecies hydrogen

transfer’ (IHT) first demonstrated by Bryant and Wolin11 using

culture based experiments with rumen bacteria and methanogens.

Much of the subsequent research focused on the taxonomic and

ecological variations among methanogen communities as affected

by diet, animal breed, and production system. In general terms,

these studies have shown that while autotrophic Methanobrevi-

bacter spp. are often numerically predominant there is also a

relatively diverse population of heterotrophic archaea present in

these animals6,12. In recent years, the application of ‘omics’

approaches has provided new insights into the roles the archaea

might play in rumen function. Poulsen et al. (2013) showed that

the reduced methane emissions from dairy cows fed rapeseed

oil could be attributed to a selective suppression of the

‘Methanoplasmatales’, with coincident decreases in transcripts

encoding for methylotrophic methanogenesis from the rumen

contents of these animals13. New Zealand and US-DOE researchers

have also studied the rumen microbiota of sheep stratified with

respect to methane production, and demonstrated that the trait

is heritable14. Using a combination of metagenomic and metatran-

scriptomic methods they found no significant differences in total

methanogen numbers between the ‘low’ and ‘high’ methane

producers, although there were differences in the relative abun-

dances of the methylotrophic Methanosphaera spp. (increased in

‘low methane’ sheep) and the hydrogenotrophic Methanobrevi-

bacter gottschalkii clade (increased in ‘high methane’ sheep). The

metatranscriptomic data revealed that 7/10 genes coordinating

the hydrogenotrophic pathway were significantly increased in high

methane producing sheep. Collectively, these findings suggest

that while the inhibition of select populations of methanogens can

mitigate livestock methane emissions, it is also a heritable trait,

suggesting host-mediated effects on the rumen microbiota. In that

context, ‘high methane’ emitting animals have been postulated

to possess a longer retention of feed within the rumen as well as

alterations in the bacterial ‘ruminotype’ increasing the levels of

ruminal hydrogen, with coordinate elevated expression of

genes encoding the hydrogenotrophic pathway and greater

methane yield15,16. It seems intuitive then to further suggest that

the increased relative abundance of hydrogen-dependent

methylotrophic methanogens in ‘low methane’ animals relates to

their capacity for growthwhen the bacterial ruminotype favours less

hydrogen production during fermentation12,17.

Differences downunder: the low methane

emitting macropodids
Themacropodids (kangaroos, wallabies, pademelons and relatives)

bear some similarity to ruminants in so far as their reliance on

forestomach colonisation bymicrobes for plant biomass conversion

and nutrient provision. In contrast, the foregut microbiota resident

in these animals releases relatively low amounts of methane com-

pared to sheep18,19. Although these observations were initially

proposed to reflect the absence of methanogenic archaea within

the macropodid forestomach, several studies have now demon-

strated the presence of Methanobrevibacter, Methanosphaera,

and ‘Methanoplasmatales’ archaea, albeit at numbers substantially

less than found for ruminant livestock (~106 g.sample–1 c.f. ~108 g.

sample–1)6. Our group has now produced an axenic culture of

Methanosphaera sp. (strain WGK6) from foregut digesta collected

from a Western grey kangaroo (Macropus fuliginosus). Like

the human strain Methanosphaera stadtmanae DSM-3091, WGK6

uses methanol for methane formation, energy production and

growth. However, the annotated draft sequence of the WGK6

genome suggests the macropodid isolate possesses some unique

features that may support a greater metabolic versatility than

previously characterised from studies of the human strain. So

it seems that the adaptations to herbivory in the ‘low methane’

emitting macropodids includes the maintenance of Methano-

sphaera spp., which also seem to be present in greater abundance

in ruminant animals individually confirmed to be ‘low methane’

emitters.

Humans and methanogens: a docile partnership

or secret frenemies?
Methanogens are consistently identified from human subjects

deemed healthy or suffering from disease; however the relation-

ships between the diversity of methanogen community members

and the health status of the host are still unclear. Early studies

determined that like other mammals the human large bowel

was colonised by hydrogenotrophic Methanobrevibacter spp.

(principallyMbb. smithii) and themethylotrophicMethanosphaera

spp. (principallyMsp. stadtmanae20). More recently, the analysis of

human microbiota samples from subgingival, intestinal or vaginal

mucosae has further expanded the diversity of methanogenic

archaea to include a new species of Methanobrevibacter (Mbb.

oralis), as well as two isolates of methylotrophic archaea (Candi-

datus ‘Methanomethylophilus alvus’ and Methanomassiliicoccus

luminyensis) affiliated with the newly defined orderMethanoplas-

matales21,22. Interestingly, our own unpublished studies, as well

as the findings of Poulsen et al.13, Dridi et al.21 and Borrel et al.22

show these archaea are capable of using methylated amines arising

from phosphatidylcholine metabolism to support growth. In that

context, establishment of the Methanoplasmatales in the human

large bowel might be of clinical relevance for persons known to
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possess relatively high levels of trimethylamine-oxide in blood,

because of its association with cardiovascular disease pathogenesis

(reviewed by Morrison23 and Brugère24). However, there is also

mounting evidence from cross-sectional studies that variations in

archaeal communities at different body sites might impact human

health25–27. For instance, patients with periodontitis have been

found to harbour large numbers of methanogenic archaea, in

addition to acetogenic and sulphate-reducing bacteria within sub-

gingival periodontal pockets28. Blais Lecours et al.29 also confirmed

that both Mbb. smithii and Msp. stadtmanae can be immunosti-

mulatory in animal models of respiratory disease, with the latter

provoking a stronger immune response. Furthermore,Blais Lecours

et al.30 reported that while the total numbers of methanogenic

archaea are less in patients suffering from inflammatory bowel

disease (IBD), the prevalence of Msp. stadtmanae was greater

in these patients, and healthy human subjects produced an

antigen-specific IgG response to this archaeon. These results

suggest that Msp. stadtmanae prevalence and/or abundance may

be a biomarker of gut dysbiosis, being more prevalent in persons

with an altered ‘low hydrogen’ fermentation scheme. This hypoth-

esis warrants more detailed examination as part of well-designed

clinical studies of IBD and perhaps, other chronic inflammatory

diseases.

Summary
Despite the widespread recognition of the roles methanogenic

archaea play in gut environments, there is still much to learn about

their metabolic versatility, host adaptation, and immunomodula-

tion. Recent research of the methylotrophic archaea from three

divergent mammalian hosts suggests that methane matters in

animals and man, from beginning to end!
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