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The major barrier to a cure for HIV is the existence of

reservoirs consisting predominantly of latently infected

CD4+ T cells, which do not produce virus constitutively but

canbe induced toproduce infectiousvirusonactivation.HIV

latency research has largely focused on peripheral blood,

yet most HIV-infected cells reside in tissues, especially the

gut, where differences in drug penetration, cell types, and

immune responses may impact mechanisms of persistence.

Exploring the differences between the gut and the blood in

transcriptional blocksmay reveal fundamental insights into

mechanisms that contribute to HIV latency. Our novel tran-

scriptional profiling assays enable us to determine where

blocks to HIV transcription occur in various tissues and the

magnitude of their contribution. These assays could also be

adapted to investigate latency established by other retro-

viridaeorevenDNAviruses suchasherpesviridaewithaview

to pinpointing mechanisms underlying latency in vivo and

ultimately contribute to designing a cure.

Probing HIV in the gut

HIV remains a major pandemic, with more than 36million people

affected worldwide. Over 1.1million people in the US are currently

living with HIV. In Australia, increased awareness and high profile

health promotion campaigns have been unsuccessful in reducing

thenumberofnew infections,whichhave remained steadyover the

last few years1. Despite the success of combination antiretroviral

therapy (ART) in suppressing HIV-1 replication, ART is not curative

and residual virus continues to cause immune activation, organ

damage, and reduction in life expectancy2,3. HIV-1 evades ART and

immune responses through latent infection of CD4+ T cells4–7.

Since these latently infectedcellsdonotproduceHIVproteins, they

escape viral cytopathic effects and evade detection by the immune

system. Latent HIV has been primarily found in long-lived memory

CD4+ T cells, which can survive for decades and expand the viral

reservoir by cell proliferation8–11. These latently infected cells are

considered to be the main barrier to HIV eradication4 and their

reactivation in vivo likely contributes to sustained immune activa-

tion observed during suppressive ART12.

Although much HIV latency research utilises in vitro models or

cells from peripheral blood, prior work has highlighted differences

between the gut and blood in the phenotype of infected T and

non-T cells12,13. Furthermore, gut and blood compartments differ

in levels of T cell activation and its relationship with HIV transcrip-

tion12. Considering that the gut harbors up to 85% of all lymphoid

tissue and over 90% of all lymphocytes14,15, it is imperative to

investigate how mechanisms of HIV persistence and latency differ

between gut and blood in vivo. To this end, we are employing a

cutting-edge ‘transcription profiling’ approach, which features a

novel panel of highly conserved, sensitive, quantitative reverse

transcription droplet digital PCR (RT-ddPCR) assays. This approach

quantifies the levels of HIV transcripts that suggest different

mechanisms of transcriptional blockade and/or progression

though various stages of HIV transcription. The levels and ratios

of different HIV transcripts can be used to determine the degree to

which different mechanisms contribute to reversible inhibition of

HIV gene expression, and hence latency, in cells fromHIV-infected

individuals.

Exploiting transcriptional features of HIV

The compact genome of HIV features major coding regions,

including: 1) gag, pol and env, common to all retroviruses, which
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encode essential structural proteins (such as envelope, matrix and

capsid) and critical enzymes, including protease (catalyses cleav-

age), reverse transcriptase (reverse transcribes RNA genome into

double-stranded DNA) and integrase (mediates integration into

host genome); 2) regulatory genes (tat and rev); and 3) accessory

genes (vif, vpr, vpu and nef) (Figure 1). A major putative mech-

anism driving HIV latency is transcriptional interference (TI),

caused by ongoing transcription of host genes in cis that inhibit

the assembly of the RNApolymerase complex on theHIV promoter

region, the 5’-long terminal repeat (LTR)16–19. ‘Read-through’

transcripts (Figure 1) are suggestive of TI since they include the

U3-U5 region that distinguishes them from canonical HIV tran-

scripts. Other mechanisms that can lead to a block to HIV tran-

scription initiation include epigenetic modification, a lack of host

initiation factors18,20, suboptimal activity of the viral transcription

factor Tat21 and integration into transcriptionally silent regions of

the genome18,22,23. The degree of transcriptional initiation can be

assessed by detection of transcripts containing the ‘transactivation

response’ (TAR) element, which is the RNA target of Tat protein

and is present in all HIV transcripts (Figure 1). Our ‘TAR’ assay

has been specifically designed to maximise the detection of short,

prematurely terminated transcripts with an efficiency equal to

longer transcripts24,25 by incorporating an additional polyadenyla-

tion step that generates an accessible priming site for reverse

transcription. This strategy offers a considerable advantage over

other assays, which can detect only 4% of true short transcripts

and thus significantly underestimate the abundance of these

transcripts24.

Other proposed mechanisms of HIV latency include downstream

blocks to elongation due to the lack of host elongation factors, the

presence of inhibitory factors, nucleosome conformation and

insufficient Tat activity21,26–28. Such mechanisms can be evaluated

by targets for downstream sequences (such as ‘Long LTR’) that

indicate elongation past the TAR loop. To assess how efficiently

transcription proceeds through pol to the 3’end, transcripts

containing pol and nef target sequence are also detected by our

panel of assays. Levels of polyadenylated HIV RNA (‘PolyA’),

indicative of transcription completion29, are detected using pri-

mers that span the LTR (U3) and polyA tail. Polyadenylated tran-

scripts can act as surrogate markers for HIV protein. Similarly,

multiply spliced HIV RNA (‘Tat-Rev’), heralding the completion of

splicing, can serve as a surrogate for productive infection30. The

levels of each distinct transcript and the ratios between them can

be used to quantify the degree to which HIV transcription is

inhibited in vivo by TI or blocks to transcriptional initiation,

elongation, completion and splicing.

The novelty of this approach lies in the ability to simultaneously

investigate multiple mechanisms of transcriptional blocks in vivo.

Combined with RT-ddPCR, which enables absolute cDNA quanti-

fication24, this approach provides a considerable advantage over

previouswork thatmostly focusesononemechanismof latency at a

time andhas typically utilised in vitromodels of latency,whichmay

not recapitulate what happens in vivo.18–20,22,23,26–28. Unlike pre-

viouslyemployedstrategies, specificblocks to transcriptionand the

magnitude of their impact on the prevailing levels of HIV RNA can

be simultaneously assessed by determining the expression of these

processive transcripts. These data can then inform strategies to

target latency reversal. Using matched tissues from ART-sup-

pressed HIV-infected individuals, this transcription profiling

approach is beginning to reveal differences between blood and

gut in the blocks toHIV transcription, which is of particular interest

due to thedifficulty in accessing tissue samples and the subsequent

Figure 1. The HIV genome and the targets for transcription profiling assays. This schematic represents the genetic organisation of proviral HIV DNA
and the HIV RNA assays that target specific sequence regions, which reveal insight into blocks to transcription. Some proposed mechanisms that
underlie the blocks to transcription initiation and elongation are listed.
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paucity of data examining HIV latency in the gut. This work, which

contributes to elucidating the molecular mechanisms that govern

HIV latency, may lead to new therapies aimed at curing HIV.
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