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Thiocyanate (SCN–) forms in the reaction between

cyanide (CN–) and reduced sulfur species, e.g. in gold ore

processing and coal-coking wastewater streams, where it

is present atmillimolar (mM) concentrations1. Thiocyanate

is also present naturally at nM to mM concentrations

in uncontaminated aquatic environments2. Although less

toxic than its precursor CN–, SCN– can harm plants and

animals at higher concentrations3, and thus needs to

be removed from wastewater streams prior to disposal

or reuse. Fortunately, SCN– can be biodegraded by
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microorganisms as a supply of reduced sulfur and nitrogen

for energy sources, in addition to nutrients for growth4.

Research into how we can best harness the ability of

microbes to degrade SCN– may offer newer, more cost-

effective and environmentally sustainable treatment solu-

tions5. By studying biodegradation pathways of SCN– in

laboratory and field treatment bioreactor systems, we can

also gain fundamental insights into connections across the

natural biogeochemical cycles of carbon, sulfur and

nitrogen6.

Thiocyanate: a commonwastewater contaminant

Thiocyanate (SCN–) is a common contaminant associated with a

range of industries, and is typically found at its highest concentra-

tions in thewastewater of gold and silvermines as a result of the use

of CN– as a lixiviant during ore processing7. Thiocyanate is also

commonly a component of coal coking wastewater alongside

phenol and CN–8. These typically voluminous waste streams pose

a serious environmental hazard due to their persistence and

toxicity. Although a number of chemical SCN– degradation tech-

niquesexist, they areoften inefficient andexpensive9. Alternatively,

many mines choose to store contaminated tailings indefinitely in

dam structures, and re-use the SCN– contaminated water during

ore processing. However, the presence of SCN– in this re-used

water is known to impact gold extraction efficiency negatively10, as

well as to impede the metabolism of biomining microorganisms11.

Improved SCN– treatment systems, therefore, offer an opportunity

improve the sustainability of mining processes globally.

Diversity of thiocyanate-degrading

microorganisms

Thiocyanate offers a rich source of growth nutrients and energy to

microorganisms, in the form of reduced sulfur and nitrogen, and a

number of microbial species are known to be capable of SCN–

degradation4. Importantly, these species donot belong to a distinct

phylogenetic group, and the presence/absence of SCN–-degrading

potential is often even strain specific. This complicates their iden-

tification using phylogenetic markers, such as the 16S rRNA gene.

Much of what is currently known has, therefore, been achieved

through culturing experiments. These studies have revealed di-

verse metabolic traits associated with SCN– degradation, where

chemolithotrophs utilise the reduced sulfur as an energy source12-

–14, and heterotrophs utilise the nitrogen as a growth nutrient15–17.

Despite SCN– biodegradation being widely regarded as an aerobic

process, one bacterium (Thialkalivibrio thiocyanodenitrificans)

was found to be able to couple this process to nitrate reduction14,

opening up the possibility of anaerobic SCN– degradation.

Experimentation on culturable strains has also allowed the eluci-

dation of two distinct pathways of SCN– degradation. These path-

ways proceed via two intermediates, carbonyl sulfide (COS) or

cyanate (CNO–), catalysed by one of two distinct types of SCN–

hydrolases (SCNase)18,19, or by an SCN– dehydrogenase (TcDH)

enzyme20,21, respectively. The resulting COS and CNO– interme-

diate chemical species are then available for degradation by

enzymes associated with b-carbonic hydrase22 or cyanate anhy-

drase23. Both of these SCN– biodegradation pathways result in the

release of reduced sulfur (S2– or S0), NH4
+ and CO2.

The advent of high-throughput sequencing, and the rise in ge-

nome/metagenome and proteome/metaproteome sequences, has

yielded vast databases of protein andDNA sequences. Significantly,

protein sequences for the three known SCN–-degrading enzymes

are available, which allow a deeper look into the distribution of

SCN–-degrading enzymes. The three-subunit SCNase enzyme, orig-

inally isolated in Thiobacillus thioparus THI11518, is the most

widely identified enzyme in protein databases, with 416 sequences

identified as the g-subunit in the NCBI nr database. These

sequences primarily belong to the Actinobacteria, due to a bias

towards full genome sequences of the medically significant Myco-

bacterium genus. They also contain sequences belonging to a

number of thiobacilli, sulfur-oxidising g -proteobacteria (including

a number of Chromatiales) and a-proteobacteria (Methylobacter-

ium spp. and Sphingomonas spp.). The alternative SCNase and

the TcDH have far fewer closely related sequences in the NCBI

non-redundant protein sequence database. This SCNase has repre-

sentativesencoded inanumberof thiobacilli,Afipia spp. andsulfur-

oxidising g -proteobacteria. The TcDH, originally purified from two

Thioalkalivibrio spp.21, appears to be closely related to other

Thioakalivibrio, and more distantly related to proteins of un-

known function in Thioploca ingrica, Nitrospirae and Hydroge-

nobacter thermophilus. Thecomparatively fewmetaproteomeand

metagenome studies, targeting SCN–-contaminated systems, limit

our understanding of the true scope of the distribution of these

enzymes.

Thiocyanate biodegradation triggers complex

microbial community interactions

Although SCN– degradation is undertaken by a limited number of

bacterial species (or strains), wider implications can result for the

whole microbial community due to the roles its constituent ele-

ments can play as biological energy sources or growth nutrients.

As a result, interesting and potentially useful symbiotic or depen-

dent relationships can develop between SCN– degraders and

non-SCN– degraders (Figure 1).
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Thiocyanate-degrading bioreactors are often dominated by SCN–-

degrading and sulfur-oxidising strains of the thiobacilli24,25. Al-

though autotrophic, these bacteria have also been found to dom-

inate in systems fed with a labile carbon source26,27. Their

dominance is a testament to the strong selective pressure that

SCN– exerts on a microbial community. The presence in these

systems of a number of sulfur-oxidising taxa that do not genetically

encode for known SCN–-degrading enzymes suggests a fraction of

the reduced sulfur is shared within the community. The eventual

liberation of NH4
+ from SCN– degradation also opens up potential

cross-feeding relationships. Several SCN–-treating systems were

found to sustain populations of nitrifying bacteria, utilising NH4
+

as an energy source and lacking the ability to degrade SCN–24,26.

The subsequent nitrate can also supply an electron acceptor for

denitrification in anoxic regions of these systems26. The supply of

NH4
+ as a nitrogen-containing nutrient likely provides the primary

source of nitrogen for growth of microbial communities inhabiting

these systems25. This nitrogen can also support phytoplankton

growthunderphototrophicconditions28.These symbiotic relation-

ships have the potential to be harnessed for the effective removal

of nitrogen from wastewater following SCN– degradation.

As SCN– degradation is able to support dominant populations of

chemolithotrophs, it has the potential to exert a large influence on

carbon cycling in SCN– treatment systems. Indeed, the SCN–-

degrading thiobacilli and Thioalkalivibrio are known to utilise the

Calvin-Benson-Bassham cycle to fix CO2
21,26. In the absence of a

labile carbon source, the sulfur- and nitrogen-oxidising chemo-

lithotrophs canprovide theprimary source of carbon in the system.

Our own work, for example, found that a SCN– treatment system

operated without labile carbon input, and was dominated by

chemolithotrophs, sustaining SCN– degradation and a consider-

able diversity of heterotrophic microorganisms25. This study also

implicated a role for bacterivorous Amoebazoa in preying on the

microbial community and closing themicrobial loop in the system.

Implications for thiocyanate-degrading

biotechnology

Microbial communities capable of SCN– degradation offer an op-

portunity to treat large quantities of wastewater effectively. Such

systems, adopting various designs, have already been deployed

with success at field scale24,29,30. Much research is now going

into understanding these systems at the molecular scale, and

developingmoreefficientprocesses.Understanding the aforemen-

tioned cross-feeding relationships within SCN– treatment systems

are vitally important to this process improvement. A good example

is the revelation, achieved through a genome-resolved metage-

nomics approach, that even in organic carbon-fed systems, the

community can be dominated by SCN–-degrading autotrophic

bacteria26. Our own work has proven experimentally that SCN–-

degrading bioreactors can be operated in the absence of organic

carbon amendments25. This autotrophic SCN– degradation ap-

proach, combined with nitrification and denitrification, has been

deployed at pilot scale to treat contaminated groundwater at

Stawell Gold Mines in Victoria (Figure 2). This process is able to

completely degrade the influent SCN– (300–400mg L–1), resulting

in sulfate and N-containing products. By harnessing various met-

abolic niches the initially released NH4
+ is nitrified to nitrate and

subsequently removed by denitrification. In addition to this

Figure1.Thiocyanatebiodegradationcan triggeracomplexseriesof interactionswithinamicrobial community revolvingaround thecyclingof carbon,
nitrogen and sulfur. The initial degradation is primarily an aerobic process mediated by sulfur-oxidizing chemolithotrophs capable of CO2 fixation.
These primary producers are able to supply recycled organic carbon (Corg) to a diverse population of heterotrophic bacteria. The released NH4

+ is
available as a growth nutrient to the community or an energy source to nitrifying bacteria.
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engineered approach, we reported for the first time the ability to

promote in situ SCN– biodegradation in contaminated gold mine

tailings water held in large open air storage facilities9. This process

was promoted through phosphate nutrient addition alone, and

offers a passive approach for the treatment of large quantities of

contaminated material. Our future work aims to better resolve the

active metabolic interactions within the microbial communities in

these in situ and ex situ approaches. This will help us to promote

beneficial symbiotic relationships within the system.

Collectively, the advances in our understanding of themetabolisms

underpinning SCN– biodegradation allow for better designs and

approaches to harnessing this microbial potential. Biodegradation

of SCN–, therefore, is offering a route to improving the water

efficiency of industrial processes such as gold mining on a global

scale.

In conclusion, much has been learned at themolecular scale about

biodegradation of SCN– since thismetabolic trait was first reported

in T. thioparus12, including the enzymes responsible and the

community wide biogeochemical impacts. The advent of ‘multi-

omics’ approaches is allowingus toprobe theseprocesses in situ in

SCN–-biodegrading treatment systems. The few studies utilising

these techniques have spurred significant process improvements,

in addition to revealing fundamental insights into SCN– biodegra-

dation and the subsequent metabolic cycling of its breakdown

products. These insights, although gained from engineered sys-

tems, can help inform the global cycling of SCN–, CNO– and COS

andbetter constrain the role ofmicrobial communities in thewider

carbon, nitrogen and sulfur cycles. Given the limited number of

systems investigated to this depth, more work is needed to

appreciate fully the diversity and complexity of microbial commu-

nities degrading SCN–.
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