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Abstract. Over the past decade, nontypeable Haemophilus influenzae (NTHi) has gained recognition as a major

opportunistic pathogen of the respiratory tract that imposes a substantial global burden of disease, owing to a high rate

of morbidity and ensuing complications. Further amplifying the global impact of NTHi infections is the increasing spectrum

and prevalence of antibiotic resistance, leading to higher rates of treatment failure with first- and second-line antibiotics

regimes. The threat of antibiotic resistance was recognised by the World Health Organization in 2017, listing NTHi as a

priority pathogen for which new therapies are urgently needed. Despite significant efforts, there are currently no effective

vaccine strategies available that can slow the growing burden of NTHi disease. Consequently, alternative preventative or

therapeutic approaches that do not rely on antibiotic susceptibility or stable vaccine targets are becoming more attractive.

The nutritional dependency for haem at all stages of NTHi pathogenesis exposes a vulnerability that may be exploited for the

development of such therapies. This article will discuss the therapeutic potential of strategies that limit NTHi access to this

vital nutrient, with particular focus on a novel bacteriotherapeutic approach under development.
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NTHi is a major respiratory pathogen for
which new therapies are needed

Nontypeable Haemophilus influenzae (NTHi) is a common colo-
niser of the upper respiratory tract in healthy children (20–80%)
and adults (20–30%), the prevalence of which varies considerably
across geographical regions1–4. However, in susceptible indivi-
duals, NTHi represents a major cause of opportunistic infections in
the respiratory tract, namely acute otitis media and sinusitis in
children, and lower respiratory tract infections in elderly indivi-
duals or those with chronic obstructive pulmonary disease5.
Collectively, these infections and subsequent long-term health
complications, such as hearing loss or decline in lung function,
impart a significant global disease burden5,6. Further amplifying
the global impact of NTHi infections is the rapidly expanding
spectrum and prevalence of antibiotic resistance, leading to treat-
ment failure with first- and second-line antibiotics5,7. The high
morbidity and long-term antibiotic prescription associated with
NTHi infections, collectively expose a substantial proportion of the
population to antimicrobial agents, driving resistance to a broad-
spectrum of antibiotics in the community8,9. The threat of antibi-
otic resistance was recognised by the World Health Organization in
2017, listing NTHi as a priority pathogen for which new therapies
are urgently needed10. Owing to the high genetic heterogeneity
and phase-variable expression of conserved antigen targets, there
are currently no effective vaccine strategies available that can slow
the growing burden of NTHi disease11. Consequently, novel pre-
ventative or therapeutic approaches that do not rely on antibiotic
susceptibility or stable vaccine targets are becoming more
attractive.

Haem-iron acquisition is a major
determinant of NTHi pathogenesis

The pathogenesis of NTHi is largely dictated by interactions with
host airway epithelia. Although the exact mechanisms are poorly
understood, NTHi adhesion and colonisation of the host pharyngeal
epithelium, followed by migration to privileged anatomical sites, is
required to elicit an infection12. Survival and persistence at the site
of infection is mediated by host-cell internalisation, formation of
biofilms, or modulation of the immune response that protects
bacterial populations from immune or antibiotic clearance13–15. In
addition to being an essential growth requirement, access to iron-
containing haem plays an important role in the ability of NTHi to
perform these interactions and as such, the ability to sequester host-
derived sources of haem is a key determinant of pathogenesis16,17.
The consequence of NTHi haem starvation, either by disruption of
acquisition mechanisms or by environmental restriction, has been
demonstrated to attenuate virulence in animal models of invasive
disease and otitis media18–21. Strategies that interrupt NTHi acquisition
or utilisation of host-derived sources of haem may therefore have a
significant impact on the ability of NTHi to cause disease.

A new therapeutic approach: exploitive
competition for haem-iron

Recently, we discovered strains of the closely related commensal
Haemophilus haemolyticus (Hh) that also inhabit the pharyngeal
niche and secrete a novel haemophore (since named haemophilin;
Hpl) that elicits potent inhibitory activity against NTHi22,23.
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Functional and proteomic investigation demonstrated that Hpl is a
previously unrecognised haem uptake mechanism of Hh, which
inhibits NTHi growth through exploitative competition for haem.
We have since conducted several investigations in vitro and in vivo
to test the NTHi-inhibitory capacity of Hpl-producing strains of Hh
(Hh-Hpl+) and propose their therapeutic utility as a respiratory
probiotic.

In vitro investigations

In a broth co-culture system, NTHi strains were outcompeted by Hh-
Hpl+ and suffered a complete loss of fitness over subsequent gen-
erations24. Similarly, in tissue culture models of nasopharyngeal
(D562) and lung epithelia (A549), Hh strains with high levels of hpl
expression protected cell monolayers against adhesion and invasion
by NTHi25 (Figure 1). Significant inhibition of NTHi adherence and
invasion was maintained when Hh-Hpl+ treatment doses were
10–100-fold lower than the NTHi challenge. In both in vitro models,
NTHi-inhibitory activity correlated with levels of hpl expression
and Hpl protein quantified from competition media. The absence
of NTHi-inhibitory activity in a hpl knockout or native non-
producing strains confirmed that the inhibitory phenotype was
mediated by the ability to produce Hpl.

In vivo investigations

Considering the NTHi-inhibitory activity in vitro we hypothesised
that natural pharyngeal carriage of Hh strains with the hpl open

reading frame would be associated with a lower prevalence and/or
density of NTHi colonisation in healthy individuals. Real-time
PCR was used to quantitatively compare the oropharyngeal carriage
load of NTHi and Hh populations with the Hh-hpl+ or Hh-hpl–

genotype from 257 healthy adults in Australia. Compared to carriage
of Hh-hpl– strains, adult (18–65 years) and elderly (>65 years)
participants that were colonised with Hh-hpl+ were 2.43 (95% CI,
1.95–2.61; P < 0.0001), or 2.67 times (95% CI, 2.63–2.70;
P = 0.0036) less likely to carry NTHi, respectively. Colonisation
with high densities of Hh-hpl+ correlated with low NTHi carriage
load and a 2.63-times (95% CI, 2.56–2.70, P = 0.0112) lower
likelihood of acquiring/maintaining NTHi colonisation status
between visits26 (Figure 2).

Potential translation as a respiratory
probiotic to prevent NTHi infections

The presence of healthy carriers of NTHi indicates that a complete
eradication of NTHi is not necessary to prevent infection. Further-
more, higher NTHi pharyngeal carriage loads are correlated with an
increased susceptibility to otitis media in vivo27–30 and an increased
severity of airway inflammation, exacerbations, and daily symptoms
in chronic obstructive pulmonary disease31,32. Thus, even small
reductions in NTHi carriage might have beneficial clinical outcomes.
Using a model designed to predict the risk of otitis media in children
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Figure1. NTHi attachment and invasion of A549 and D652 cells post treatment withHaemophilus haemolyticus (Hh) strains (BW1, RHH122, NF5,
NF5, NF1) or the hpl knockout (BW1hpl-KO). The percent attachment of NTHi (compared to media control) to A549 (a) and D562 (b) cell monolayers
post 4-h pre-treatment with Hpl-producing Hh (Hh-Hpl+) or Hh strains that do not produce Hpl (Hh-Hpl–). Percent of internalised NTHi (compared
to media control) after exposure to A549 (c) and D562 (d) cell monolayers post 4-h pre-treatment with Hh-Hpl+ or Hh-Hpl–. Error bars represent the
�SEM (standard error of the mean) of three biological replicates, measured triplicate: *P < 0.05, ****P < 0.0001.
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based on NTHi pharyngeal carriage load30, we could predict a�40%
decrease in the risk of infection, provided the level of protection
conferred by Hpl-producing Hh to model cell lines was preserved in
the context of the respiratory tract. Hh also possesses favourable
characteristics suited to probiotic applications; it has not been
implicated as a causative agent of respiratory tract infection33,34

and as a normal pharyngeal inhabitant, is able to thrive in the niche
amongst other microbial inhabitants35. Additionally, probiotic-based
therapies have a narrow spectrum of activity that do not damage host
tissue, provoke collateral damage to the healthy microbiome or
promote enrichment of resistant clones36; properties which make
them an asset against the emergence of antibiotic resistance.

In conclusion, Hpl-producing Hh may be a promising respiratory
probiotic candidate for the prevention of NTHi infections by inhibiting
requisite pharyngeal colonisation.
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Figure 2. NTHi dominance in oropharyngeal swabs of healthy adult (18–65 years) or elderly (>65 years) participants co-colonised with Hh. NTHi
oropharyngeal carriage prevalence (a) or proportion of NTHi (as a function of total Hh) (b) among participants concurrently carrying Hh strains that
possess the hpl ORF (Hh-hpl+) or do not possess the hpl ORF (Hh-hpl–). Hh-hpl+ (predominant) denotes instances where hpl+ is the predominant
Hh genotype (>0.5 of total Hh). NTHi colonisation status in participants carrying hpl+ (n = 25) or hpl– (n = 25) strains of Hh on follow-up testing (visit
2) 2–6 months after their initial visit (visit 1). Error bars represent �SEM (standard error of the mean); statistical significance was determined by
simple logistic regression (a) or nonparametric Spearman correlation (b); **P < 0.005, ***P < 0.001, ****P < 0.0001.
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