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Detection and control of off-flavour compound-producing 
streptomycetes on locally produced nuts using streptophages 
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ABSTRACT 

Members of the phylum Actinomycetota are the most prominent part of the soil microbiota, 
more specifically the species within the genus Streptomyces of this phylum. Key functions of 
Streptomyces species (or streptomycetes in general terms) include nutrient cycling and plant 
growth promotion and disease protection. However, these species can also produce volatile 
organic compounds, predominantly geosmin, which is responsible for musty and mildew scents 
that are unpleasant to humans and can negatively impact the nut crop industry as odorous nuts 
generally lose their market value. Bacterial viruses, called bacteriophages have been previously 
used successfully in agriculture and aquaculture to remove such odorous species and they may 
therefore be applied to the nut industry. To eliminate these compounds, the producer strepto-
mycetes may be selectively removed from nut surfaces using streptophages. The removal of 
Streptomyces species from nut surfaces can then be expected to minimise geosmin production, 
therefore removing the unpleasant off-flavours and benefiting the nut industry.  

Keywords: actinomycetes, bacteriophages, food taints, geosmin, nuts, Streptomyces, streptophage, 
volatile organic compounds. 

Introduction 

Streptomycetes as the producers of volatile organic compounds 

Over a thousand microbial volatile organic compounds (VOCs)1 have been identified 
from streptomycetes, many of which are acids, alcohols, aldehydes, alkenes, benzenoids, 
esters, ketones, pyrazines, and terpenes.2 VOCs produced by Streptomyces species can 
benefit agriculture via the production of bioactive compounds, which can assist in 
bacterial and fungal growth inhibition, plant growth promotion or inhibition, and invoke 
resistance mechanisms.2 

Geosmin (trans-1,10-dimethyl-trans-9-decalol), 2-methylisoborneol (2-MIB; 1,2,7,7- 
tetramethyl-exo-bicyclo-heptan-2-ol), and dimethyl disulfide are three of the major 
VOCs produced by Streptomyces species.3–5 Geosmin and 2-MIB are semi-volatile and 
terpenoid secondary metabolites.6 Streptomycetes produce these compounds via the 
1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) and 
melavonic (MVA) pathways.7 Likewise, dimethyl disulfide is a volatile sulfur compound 
produced via methionine degradation followed by methanethiol oxidation.8,9 

Taste and odour compounds in environment 

VOCs are also known as taste and odour compounds (T&Os) due to their detectability by 
humans. Humans can detect these T&Os-VOCs at concentrations of 4 ng/L, due to their 
olfactory sense.4,10 Furthermore, geosmin synthase genes, which enables geosmin pro-
duction, are broadly distributed within the members of the genus Streptomyces.4,11 These 
compounds arise in food products, such as nuts and fish, via bioaccumulation from plant 
debris, soil, and water use.6,12,13 Further accumulation of geosmin can occur in storage 
silos if left unmaintained due to continued growth of streptomycetes, not only resulting 
in strong odours but also giving rise to organic dust toxic syndrome.14 Geosmin has an 
earthy flavour,15,16 yet there has been no successful technique to remove these VOCs due 
to the ineffectiveness and high cost of current methods.17 A recent study conducted at the 
University of the Sunshine Coast (USC) aimed to remove VOCs on locally-produced and 
openly sold nut samples using streptophages. 
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Bacteriophage safety in agricultural products and 
humans 

Bacteriophages have seen a rise in use as biocontrol agents 
in agriculture, bioprocessing, and healthcare.18,19 

Bacteriophages are regarded as safe for animals, humans, 
and plants, further promoting their use in the previously 
mentioned industries.20–22 Chibani-Chennoufi et al.23 

reported that mice exposed to an oral four-phage cocktail 
did not experience a decline of their commensal E. coli 
biota. Bruttin and Brüssow24 also reported that human vol-
unteers orally exposed to phage T4 maintained their com-
mensal E. coli population. 

Findings of an example study from the 
Sunshine Coast region 

Streptomycetes 

Eight streptomycetes were isolated from seven different 
locally produced and openly sold nut samples using two 
different isolation methods (air compaction using an air 
sampler25 and conventional serial dilution26) and incuba-
tion temperatures (28°C and 37°C) to maximise the chances 
of detection of these odorous species. Details of these iso-
lates are given in Table 1. 

Streptophages 

Like bacteria, bacteriophages are present in agricultural 
environments where the host bacteria reside.27 Usually bac-
teriophages are host specific, however, they also display 
polyvalency within the host’s taxonomic rank.22 The three 
major families of actinophages are Myoviridae, 
Siphoviridae, Podoviridae. Siphoviridae morphology is the 
most abundant one, particularly in soil among the actino-
phages.28,29 This group of phages is mostly polyvalent 
within the Streptomycetaceae family to which the genus 
Streptomyces belongs. They are commonly known as strep-
tophages30 and morphologically consist of a long and flexi-
ble noncontractile tail. The siphoviridae heads contain 
portal protein at the vertices, which connects the head and 
tail segments, while the other vertices contain capsid 

proteins31 and the tails usually are 100–400 nm in length 
depending on the species.31 

Bacteriophages target host populations via phenotype 
modification, predation, and lysogeny.27 Soil is the major 
reservoir for actinophages, and they most commonly target 
actinomycete genera Streptomyces, Actinoplanes and 
Mycobacterium.27 

Application of streptophages onto nut samples 
and testing for the presence of the VOCs 

Nine different polyvalent streptophages from USC’s 
Microbial Library32 were selected and used to create a com-
posite phage suspension (Fig. 1) at a concentration of 
108 pfu/mL. A composite streptomycete suspension was 
also created by mixing all eight streptomycete isolates at a 
concentration of 104 cfu/mL. This concentration was 
selected as it represents unacceptable contamination value 
determined by the NSW Food Authority in their guidelines33 

Table 1. Key characteristics of the Streptomyces isolates from nut samples.     

Isolate code Nut type and isolation method used Closest relative identified using 16S ribosomal  
RNA gene, partial sequence Blast analysis  
https://blast.ncbi.nlm.nih.gov/Blast.cgi   

USC-7000 Corn kernels, air sampler,A 28°C Streptomyces sp. strain 219202 

USC-7001 Roasted peanuts, air sampler,A 28°C Streptomyces sp. strain GS10 

USC-7002 Raw peanuts, air sampler,A 28°C Streptomyces sp. strain HBUM206355 

USC-7003 Raw peanuts, air sampler,A 28°C Streptomyces sp. strain HBUM206419 

USC-7004 Raw almonds, air sampler,A 37°C Streptomyces werraensis strain IIPR:KR05:01 

USC-7005 Raw peanuts, air sampler,A 28°C Streptomyces werraensis strain IIPR:KR05:01 

USC-7006 Raw peanuts, serial dilution, 37°C Streptomyces werraensis strain IIPR:KR05:01 

USC-7007 Roasted peanuts, air sampler,A 37°C Streptomyces werraensis strain IIPR:KR05:01 

ASampl’air Lite (https://www.biomerieux-usa.com/industry/samplair).  

Fig. 1. TEM micrograph of the streptophages in the composite 
phage suspension displaying typical siphoviridae morphologies.   
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for microbiological quality of ready to eat foods in Australia. 
Surface sterilised and UV irradiated nut samples using the 
methods by El-Tarabily34 and Thomas and Puthur35 were 
deliberately infected with this composite sample of strepto-
mycetes. After 3 days of incubation streptophage composite 
sample was applied onto the streptomycete inoculated nuts 
with a host/phage ratio of 1:2. This ratio was selected due to 
past successful applications of phages onto hosts.36 VOC 
production was examined using Headspace-Gas chromato-
graphy mass spectrometry (HS-GC/MS) throughout the 
14 days of incubation in tightly capped bottles. A mixed 
standard of Geosmin and 2-MIB (Sigma-Aldrich) was used 
to detect Geosmin, which is known to be detected at 
8.83 min. 

Findings indicated a sharp decrease immediately in geos-
min production after the composite phage suspension appli-
cation onto streptomycete infected nut samples (Fig. 2). 
After day 8, the geosmin levels were near zero and strepto-
mycete cfu/mL came down to the acceptable levels by the 
NSW Food Authority (<102). 

2-MIB was not detected on the streptomycete or strepto-
mycete plus phage treated nut samples at any stage of this 
study. Yanxia et al.17 reported a strong correlation between 
geosmin and 2-MIB concentration, indicating that 2-MIB 
may be dependent on geosmin production so the sharp 
decrease in geosmin might be the reason of its absence. 

Conclusions 

The continual rise in demand of agricultural products has 
resulted in an increase in preferences in the use of environ-
mentally and human health friendly methods replacing 
other synthetic agents. Therefore, bacteriophage treatments 
gained attention to minimise product losses and nutritional 
properties from disease causing bacteria. Like the previous 
successful treatments of potatoes37–39 and strawberries,40

the observed success of streptophage treatment on nuts in 
this study may indicate similar positive outcomes might be 
possible. Therefore, information generated via the studies 
like the one presented here can contribute toward develop-
ment of effective phage biocontrol methods targeting 

different problems in agriculture. Such methods might sub-
sequently reduce the economic losses of the growers due to 
unmarketable product including the ones possessing earthy- 
musty smells. 
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Fig. 2. Decreased values of geosmin after phage application. Key: 
blue – geosmin production (control); orange – geosmin production 
with streptomycetes application; grey – geosmin production with 
streptomycetes application then streptophage application after day 7.  
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