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ABSTRACT 

The economic recovery of metals from sulfide ores has become a topic of increasing interest due 
to the escalating demand for critical minerals and the reducing grade of available ores. Bioleaching 
is the use of acidophilic iron and sulfur-oxidising microorganisms to facilitate the extraction of 
base metals from primary sulfide ores and tailings. One significant issue limiting the use of 
bioleaching is the availability of freshwater due to the sensitivity of these microbes to chloride. 
The use of saline tolerant acidophilic iron- and-sulfur oxidising microorganisms will go a long way 
to addressing this issue. There are three possible means of sourcing suitable microorganisms; 
adaptation, genetic engineering and bioprospecting, with bioprospecting showing the greatest 
possibilities. Bioprospecting in search of native organisms for bioleaching operations has led 
researchers to numerous locations around the world and the isolation of iron- and sulfur- 
oxidising acidophiles that are capable of tolerating high levels of salinity has been of particular 
interest in these investigations.  

Keywords: acid saline lakes, Acidihalobacter, acidophiles, bioleaching, bioprospecting, genetic 
engineering, halophiles, saline drains. 

As the global transition to, and the goal of governments for a zero emissions energy system 
are embraced worldwide, the demand for critical minerals such as cobalt, copper, nickel, 
lithium and rare earth elements is outstripping current availability.1 Compounding the 
lack of materials are issues of low-grade ores (uneconomical using current recovery 
processes), water consumption and downstream co-contamination of unwanted elements 
such as uranium during traditional extraction processes. Commercial success of mining 
operations often includes reclaiming and recycling mine wastes with some sites operating 
bioleaching heaps as an inexpensive alternative to the traditional pyro-metallurgical 
methods for the extraction of metals from low grade sulfide ores. 

Even though bioleaching has been employed successfully for decades, lengthy leaching 
cycles and low recovery efficiencies have hindered large scale investment and adoption of 
the process. The demand for critical minerals is increasing and the resulting upwards 
trajectory of mineral commodity prices showing no signs of slowing.2 As a result, 
investigations into optimising bioleaching practices for the reclamation of elements 
(re-processing) from fresh or abandoned tailings is gathering interest, as is the application 
of this technology to lower grade primary ores. To optimise bioleaching processes, 
numerous avenues are being explored to not only increase mineral yield from these 
practices, but also to decrease operating, environmental and maintenance costs of the 
complex systems, tackling different parameters of the procedures involved. Prospective 
strategies for advancing bioleaching operations include deliberate adaptation of orga
nisms to extreme conditions, genetic engineering and bioprospecting. 

The microorganisms currently applied to bioleaching of sulfide ores are consistently a 
combination of acidophilic bacteria and archaea whose ability to prosper in low pH 
conditions enables the dissolution of iron and inorganic sulfur by way of metabolism 
and acid generation, thus liberating recoverable minerals. Under mesophilic conditions, 
bioleaching populations are dominated by genera such as Acidithiobacillus, Acidiphilium, 
Acidiferrobacter and Leptospirillum,3 whereas increasing temperatures (up to 60°C) alters 
the taxa to favour Sulfobacillus, Acidimicrobium and Ferroplasma. Communities compris
ing multiple species are more adept at undertaking a variety of tasks than a single species 
alone,4 but all can be adversely affected by changes in numerous parameters including 
water potential, ore porosity and surface area undesirably resulting in decreased retrieval 
efficiencies. 
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These bioleaching microorganisms were originally 
isolated from some of the most inhospitable regions on 
earth5 so adaptive culturing of both pure and mixed popu
lations to extreme conditions (high compound metal con
centrations, acidity, salinity) has seen some successes. Sub- 
culturing under situations of continuous or accumulative ore 
concentrations has been adopted by many researchers as 
a way to enhance bioleaching performance and increase 
element recovery.6 However, it can be a difficult and 
lengthy process maintaining discrete population numbers 
overtime in these adapted cultures. An alternative approach 
to the adaptation of microbial populations is to utilise a 
naturally occurring microbial consortium. A consortium of 
microbes can have superior benefits over cultures of 
pure isolates as a broader array of multifaceted functions 
including inter-species biofilm formation occur that have 
demonstrated a greater rate of mineral solubilisation7 than 
when pure cultures were applied. 

Advances in proteomic and metabolomic analysis of 
microbial systems has enabled researchers to understand 
how microorganisms can tolerate extreme conditions. With 
this information, genetic manipulation and modification of 
existing bioleaching microorganisms to improve on leaching 
efficiencies has shown promise when applied to the recovery 
of rare earth elements.8 The incorporation of metabolic 
pathways involved in the degradation of organic compounds 
from heterotrophs such as Acidiphilum or Sulfobacillus into 
autotrophic iron and sulfur oxidisers (Acidithiobacillus) 
could reduce issues of organic toxicity that organics often 
bring to bioleaching operations.9 Designing and manu
facturing synthetic microbial consortia for bioleaching 
applications is an emerging area of research, however, 
their application for in situ bioleaching (in particular heap 
leaching) remains to be seen because of strong environmen
tal release laws. As microbial diversity, complete with wide 
metabolic potential, is influenced not only by the variable 
environment but also with the interactions between compet
ing microorganisms, the genetic analysis of organisms often 
conducted on pure cultures does not reflect real world situ
ations and should be taken into consideration if designing a 
synthetic population. 

Bioleaching processes at high temperatures (>45°C) has 
seen success with the application of various thermophilic 
microbial species (Sulfolobus, Metallosphaera, Acidianus)10 

for the recovery of copper, uranium and gold. Owing to the 
higher running costs of these operations (stirred tank 
reactors), this process is often restricted to high value min
erals. This, nevertheless, has fuelled the search for more 
thermophilic organisms capable of solubilising iron–sulfide 
rich ores in locales such as hydrothermal vents11 (which is 
now an emerging deep-sea biotechnology industry), volcanic 
areas12 and hot springs.13 

For bioleaching operations to be economically and envir
onmentally sustainable, water consumption must be tightly 
controlled as it is essential for ore processing and recovery. 
Implementation of untreated groundwater sources for bio
leaching applications runs the risk of tapping into sources 
with high levels of total dissolved solids, and the use of sea 
water requires understanding how chloride ions can affect 
mixed microbial communities.14 The mesophilic acidophiles 

listed earlier all demonstrate extreme sensitivity to chloride. 
Their cell membrane is permeable to the chloride ion, 
which, on entry to the cell, results in the negation of the 
positive membrane potential.15 Consequently, proton entry 
follows resulting in acidification of the cytoplasm, disturb
ing the proton motive force and eventually cell death. 
Microorganisms capable of surviving conditions of low pH, 
high salt and utilising Fe/S for energy are few in number as 
environments where these stresses co-exist are extraordin
ary unique. Therefore, bioprospecting for microorganisms 
that thrive in these conditions rapidly narrows the number 
of locations across the globe in which they may be found. 

Our initial explorations took us to the acidic saline drains 
in the Yilgarn Craton of Western Australia in 2008 where we 
isolated a potential candidate known as F5.16 F5 effectively 
released base metals from pyrite, pentlandite and chalcopyrite 
under leaching conditions with up to 30 g L−1 of chloride ions 
present, and following genomic sequencing was named 
Acidihalobacter prosperus.17 This organism was then further 
re-classified as A. yilgarnensis due to genomic sequence com
parisons with related species demonstrating a clear difference 
between it and an already existing A. prosperus.18 

Acidihalobacter prosperus (originally named Thiobacillus 
prosperus) was isolated from a shallow geothermally heated 
seafloor on the Aeolian Islands, Vulcano, Italy.19 Subsequently 
a further two halotolerant acidophiles of this genus, A. pros
perus V6 and A. ferrooxidans V8, were isolated from mixed 
shallow acidic marine pools, also on the Aeolian Islands. 
These isolates have subsequently been renamed A. prosperus, 
A. aeolianus and A. ferrooxydans,20,21 all of which are cap
able of growth at low pH (1.8–2.0) as well as tolerating high 
salt and oxidising pyritic compounds. The Acidihalobacter 
species may in the future be applied to bioleaching operations 
where concentrations of salt in the water render the usual 
consortium unviable. 

Even though the organisms that currently make up the 
Acidihalobacter genus were isolated in locations greater than 
13 000 km apart, similar environmental pressures have 
resulted in the conservation of genes essential for survival. 
Genome exploration of these organisms has revealed that the 
low pH and high salt tolerances evolved separately22 with 
the halophilic organism gaining genes for acid tolerance 
through horizontal gene transfer. Armed with this informa
tion, in vitro modelling of genetic alterations made to bio
leaching organisms (Acidithiobacillus ferrooxidans) can 
allow us to predict the success and applicability of organisms 
for mineral recovery in high salt, low pH conditions. 

As the Yilgarn Craton of Western Australia is dotted with 
numerous acidic saline lakes, it provides an ideal opportu
nity for further prospecting23 while utilising the information 
gained from molecular modelling to target specific environ
ments with the greatest chance of hosting prokaryotes suit
able for bioleaching in regions where saline water is of 
concern. Another hypersaline lake in Australia whose pH 
fluctuates with the seasons is Lake Tyrell (a shallow, salt- 
crusted depression) in Victoria, a location where numerous 
bioprospecting expeditions have been conducted24,25 in 
attempt to isolate organisms for biotechnological applica
tions. A global search of other hypersaline lakes with low pH 
(<4) for iron–sulfur-oxidising halophiles to either adapt to 
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acidic conditions or genetically modify to contain acid resist
ance mechanisms could allow for the construction of a consor
tia suitable for bioleaching in regions with salt contaminated 
waters (Fig. 1). 

By understanding the microbial diversity, proteomic, lipi
domic and genetic contributions, adaptations and pressures 
in the unique high salt, low pH environments, advances in 
the efficiency of bioleaching process could be accomplished. 
Although a range of approaches such as adaption and 
genetic modification could be applied to answering this 
problem, bioprospecting is the approach most likely to 
provide a successful solution. 
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Fig. 1. Life cycle of bioprospecting for halophilic iron- and sulfur-oxidising acidophile for use in the application of saline water 
bioleaching.    
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