Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Zoosporic true fungi in marine ecosystems: a review

Frank H. Gleason A G , Frithjof C. Küpper B , James P. Amon C , Kathryn Picard D , Claire M. M. Gachon B , Agostina V. Marano E , Télesphore Sime-Ngando F and Osu Lilje A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.

B Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, UK.

C Department of Biological Sciences, 3640 Col Glenn Highway, Wright State University, Dayton, OH 45435, USA.

D Department of Biology, 125 Science Drive, Duke University, Durham, NC 27708, USA.

E Instituto de Botánica Spegazzini, Universidad Nacional de La Plata, Calle 53 N 477, La Plata, 1900 Buenos Aires, Argentina.

F Laboratoire Microorganismes: Génome & Environnement, Université Blaise Pascal, Clermont-Ferrand II, UMR CNRS 6023, 63177 Aubière Cedex, France.

G Corresponding author. Email: frankjanet@ozemail.com.au

Marine and Freshwater Research 62(4) 383-393 https://doi.org/10.1071/MF10294
Submitted: 23 November 2010  Accepted: 13 February 2011   Published: 28 April 2011

Abstract

Although many species of zoosporic true fungi have been frequently observed and studied in freshwater and soil ecosystems, only three species have been properly identified and partially characterised from brackish and marine ecosystems, namely Rhizophydium littoreum Amon, Thalassochytrium gracilariopsis Nyvall, Pedersén et Longcore and Chytridium polysiphoniae Cohn. These species are either facultative or obligate parasites of marine macroalgae and invertebrates. Also, some species of Olpidium and Rhizophydium are parasites of small marine green algae and diatoms. Although the physiological effects of these pathogens on the growth and metabolism of their hosts are poorly understood, parasitism by C. polysiphoniae possibly affects the rates of photosynthesis and patterns of growth in infected communities of brown algae. Saprobic ecotypes of R. littoreum can also colonise dead-plant and animal substrates. Zoospores from zoosporic true fungi and other groups of microbes possibly provide important food resources for grazing and filter-feeding zooplankton and metazoans in marine ecosystems where the prevalence of disease is high or where accumulated detritus enhances biodiversity in food webs. However, quantitative studies have not yet been attempted. Recently, environmental sampling with molecular techniques has revealed unknown clades of zoosporic true fungi in extreme marine ecosystems. These fungi have been grossly under-sampled and under-studied in marine environments.

Additional keywords: Chytridiomycota, Chytridium, chytrids, food webs, marine algae, Olpidium, Rhizophydium, salinity, Thalassochytrium.


References

Amon, J. P. (1976). An estuarine species of Phlyctochytrium (Chytridiales) having a transient requirement for sodium. Mycologia 68, 470–480.
An estuarine species of Phlyctochytrium (Chytridiales) having a transient requirement for sodium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsFKhur0%3D&md5=ce2e8926d5bc886f4263413464a49e29CAS |

Amon, J. P. (1984). Rhizophydium littoreum: a chytrid from siphonaceous marine algae – an ultrastructural examination. Mycologia 76, 132–139.
Rhizophydium littoreum: a chytrid from siphonaceous marine algae – an ultrastructural examination.Crossref | GoogleScholarGoogle Scholar |

Amon, J. P., and Arthur, R. D. (1981). Nutritional studies of a marine Phlyctochytrium sp. Mycologia 73, 1049–1055.
Nutritional studies of a marine Phlyctochytrium sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmsFCqsQ%3D%3D&md5=9560589b1837be18a50cf6a904d8b933CAS |

Amon, J. P., and Yei, S.-P. (1982). The effect of salinity on the growth of two marine fungi in mixed culture. Mycologia 74, 117–122.
The effect of salinity on the growth of two marine fungi in mixed culture.Crossref | GoogleScholarGoogle Scholar |

Andrews, J. H. (1976). The pathology of marine algae. Biological Reviews of the Cambridge Philosophical Society 51, 211–252.
The pathology of marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvFSjurg%3D&md5=aa33e7c5a8dc249ba512294295f41892CAS |

Barr, D. J. S. (1980). An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales. Canadian Journal of Botany 58, 2380–2394.

Barr, D. J. S. (2001). 5. Chytridiomycota. In ‘The Mycota, Vol. VII, Part A’. (Eds D. L. McLaughlin, E. G. McLaughlin and P. A. Lemke.) pp. 93–112. (Springer-Verlag: New York.)

Barron, G. L. (2004). 19. Fungal parasites and predators of rotifers, nematodes, and other invertebrates. In ‘Biodiversity of Fungi, Inventory and Monitoring Methods’. (Eds G. M. Mueller, G. F. Bills and M. S. Foster.) pp. 435–450. (Elsevier Academic Press: Amsterdam.)

Blackwell, W. H., Letcher, P. M., and Powell, M. J. (2006). Thallus development and the systematics of Chytridiomycota: an additional developmental pattern represented by Podochytrium. Mycotaxon 97, 91–109.

Booth, T. (1971). Ecotypic responses of chytrid and chytridiaceous species to various salinity and temperature combinations. Canadian Journal of Botany 49, 1757–1767.
Ecotypic responses of chytrid and chytridiaceous species to various salinity and temperature combinations.Crossref | GoogleScholarGoogle Scholar |

Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee, J., Lu, S. D., et al. (1992). Molecular evolution of the fungi: relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Molecular Biology and Evolution 9, 285–296.
| 1:CAS:528:DyaK38XhvFSrtLY%3D&md5=d03e3a152a18fa593f14c0f38739127cCAS | 1560764PubMed |

Elbrächter, M., and Schnepf, E. (1998). Parasites of harmful algae. In ‘Physiological Ecology of Harmful Algal Blooms’. (Eds D. M. Anderson, A. D. Cembella and G. M. Hallegraeff.) pp. 351–363. (Springer-Verlag: Berlin.)

Fan, K. W., Vrijmoed, L. L. P., and Jones, E. B. G. (2002). Zoosporic chemotaxis of mangrove thraustochytrids from Hong Kong. Mycologia 94, 569–578.
Zoosporic chemotaxis of mangrove thraustochytrids from Hong Kong.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVWls7k%3D&md5=6ea66df2d1a17eb3b9506f0086a8e65eCAS | 21156530PubMed |

Förster, H., Coffey, M. D., Elwood, H., and Sogin, M. L. (1990). Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82, 306–312.
Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution.Crossref | GoogleScholarGoogle Scholar |

Gachon, C. M. M., Küpper, H., Küpper, F. C., and Šetlik, I. (2006). Single-cell chlorophyll fluorescence kinetic microscopy of Pyaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). European Journal of Phycology 41, 395–403.
Single-cell chlorophyll fluorescence kinetic microscopy of Pyaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota).Crossref | GoogleScholarGoogle Scholar |

Gachon, C. M. M., Sime-Ngando, T., Strittmater, M., Chambouvet, A., and Kim, G. H. (2010). Algal diseases: spotlight on a black box. Trends in Plant Science 15, 633–640.
Algal diseases: spotlight on a black box.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyku77O&md5=3f3dff6784a4253b41c5a33ff12c9796CAS | 20833575PubMed |

Gleason, F. H., and Lilje, O. (2009). Structure and function of fungal zoospores: ecological implications. Fungal Ecology 2, 53–59.
Structure and function of fungal zoospores: ecological implications.Crossref | GoogleScholarGoogle Scholar |

Gleason, F. H., Midgley, D. J., Letcher, P. M., and McGee, P. A. (2006). Can soil Chytridiomycota survive and grow in different osmotic potentials? Mycological Research 110, 869–875.
Can soil Chytridiomycota survive and grow in different osmotic potentials?Crossref | GoogleScholarGoogle Scholar | 16876703PubMed |

Gleason, F. H., Kagami, M., Lefèvre, E., and Sime-Ngando, T. (2008). The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biology Reviews 22, 17–25.
The ecology of chytrids in aquatic ecosystems: roles in food web dynamics.Crossref | GoogleScholarGoogle Scholar |

Gleason, F. H., Marano, A. V., Johnson, P., and Martin, W. W. (2010). Blastocladian parasites of invertebrates. Fungal Biology Reviews 24, 56–67.
Blastocladian parasites of invertebrates.Crossref | GoogleScholarGoogle Scholar |

Goka, K., Yokoyama, J., Une, Y., Kurokis, T., Suzuki, K., et al. (2009). Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Molecular Ecology 18, 4757–4774.
Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslKruw%3D%3D&md5=93c31abd2090c42df6da7bcdf621ad70CAS | 19840263PubMed |

Gorbunov, A. K., and Kosova, A. A. (2001). Parasites in rotifers from the Volga delta. Hydrobiologia 446/447, 51–55.
Parasites in rotifers from the Volga delta.Crossref | GoogleScholarGoogle Scholar |

Gutman, J., Zarka, A., and Boussiba, S. (2009). The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus fluvialis. European Journal of Phycology 44, 509–514.
The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus fluvialis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sjsrk%3D&md5=a37b749cf512649aa3bcb787049cc31eCAS |

Hanic, L. A., Sekimoto, S., and Bates, S. S. (2009). Oomycete and chytrid infections of the marine diatom Pseudo-nitzchia pungens (Bacillariophyceae) from Prince Edward Island, Canada. Botany 87, 1096–1105.
Oomycete and chytrid infections of the marine diatom Pseudo-nitzchia pungens (Bacillariophyceae) from Prince Edward Island, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlynt7vE&md5=32994b13fc947aa8411b17a399ef8b6fCAS |

Hartwright, L. M., Hunter, P. J., and Walsh, J. A. (2010). A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biology 114, 26–33.
A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslSksLg%3D&md5=ca2f0cbf02e2c720583c08cc2d622c46CAS | 20965058PubMed |

Haskins, R. H., and Weston, W. H. (1950). Studies in the lower Chytridiales I: factors affecting pigmentation, growth and metabolism of a strain of Karlingia (Rhizophlyctis) rosea. American Journal of Botany 37, 739–750.
Studies in the lower Chytridiales I: factors affecting pigmentation, growth and metabolism of a strain of Karlingia (Rhizophlyctis) rosea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXislChuw%3D%3D&md5=eabc6e45d7aeab2e1e924689a271d0afCAS |

Herrera-Vásquez, J. A., Cebrián, M. dC., Alfaro-Fernández, A., Córdoba-Sellés, M. dC., and Jordá, C. (2009). Multiplex PCR assay for the simultaneous detection and differentiation of Olpidium bornovanus, O. brassicae, and O. virulentus. Mycological Research 113, 602–610.
Multiplex PCR assay for the simultaneous detection and differentiation of Olpidium bornovanus, O. brassicae, and O. virulentus.Crossref | GoogleScholarGoogle Scholar | 19640401PubMed |

Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research 111, 509–547.
A higher-level phylogenetic classification of the Fungi.Crossref | GoogleScholarGoogle Scholar | 17572334PubMed |

Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., et al. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73, 175–192.
Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslWhs7k%3D&md5=92880453f7960522aa213baca1d17392CAS | 17330737PubMed |

James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., et al. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443, 818–822.
Reconstructing the early evolution of fungi using a six-gene phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyktbjN&md5=f783a6ef12eaafd01780e351da8ee116CAS | 17051209PubMed |

James, T. Y., Letcher, P. M., Longcore, J. E., Mozley-Standridge, S. E., Porter, D., et al. (2006). A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98, 860–871.
A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota).Crossref | GoogleScholarGoogle Scholar | 17486963PubMed |

Johnson, T. W., Jr, and Sparrow, F. K., Jr (1961). ‘Fungi in Oceans and Estuaries.’ (J. Cramer Publisher: Weinheim, Germany.)

Kagami, M., de Bruin, A., Ibelings, B. W., and van Donk, E. (2007). Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578, 113–129.
Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics.Crossref | GoogleScholarGoogle Scholar |

Kagami, M., Helmsing, N. R., and van Donk, E. (2011). Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. Hydrobiologia 569, 49–54.

Kazama, F. Y. (1972). Development and morphology of a chytrid isolated from Bryopsis plumosa. Canadian Journal of Botany 50, 499–505.
Development and morphology of a chytrid isolated from Bryopsis plumosa.Crossref | GoogleScholarGoogle Scholar |

Kazama, F. Y. (1972). Ultrastructure and phototaxis of the zoospores of Phlyctochytrium sp., an estuarine chytrid. Journal of General Microbiology 71, 555–566.

Küpper, F. C., and Müller, D. G. (1999). Massive occurrence of the heterokont parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69, 381–389.

Küpper, F. C., Maier, I., Müller, D. G., Loiseaux-De Goer, S., and Guillou, L. (2006). Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn. Cryptogamie. Algologie 27, 165–184.

Le Calvez, T., Burgaud, G., Mahe, S., Barbier, G., and Vandenkoornhuyse, P. (2009). Fungal diversity in deep-sea hydrothermal ecosystems. Applied and Environmental Microbiology 75, 6415–6421.
Fungal diversity in deep-sea hydrothermal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2itL7O&md5=4933b14b4e398a69565d76f629d2a680CAS | 19633124PubMed |

Letcher, P. M., Powell, M. J., Churchill, P. F., and Chambers, J. G. (2006). Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota). Mycological Research 110, 898–915.
Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbnK&md5=842ad54db647f8a90884f895f504a33fCAS | 16919432PubMed |

Letcher, P. M., Powell, M. J., Barr, D. J. S., Churchill, P. F., Wakefield, W. S., et al. (2008). Rhizophlyctidales – a new order in Chytridiomycota. Mycological Research 112, 1031–1048.
Rhizophlyctidales – a new order in Chytridiomycota.Crossref | GoogleScholarGoogle Scholar | 18701267PubMed |

Letcher, P. M., Vélez, C. G., Barrantes, M. E., Powell, M. J., Churchill, P. F., et al. (2008). Ultrastructural and molecular analysis of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina. Mycological Research 112, 759–782.
Ultrastructural and molecular analysis of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina.Crossref | GoogleScholarGoogle Scholar | 18501579PubMed |

Liggenstoffer, A. S., Youssef, N. H., Couger, M. B., and Elshahed, M. S. (2010). Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. The ISME Journal 4, 1225–1235.
Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores.Crossref | GoogleScholarGoogle Scholar | 20410935PubMed |

Logares, R., Bråte, J., Bertilsson, S., Clasen, J. L., Shalchian-Tabrizi, K., et al. (2009). Infrequent marine–freshwater transitions in the microbial world. Trends in Microbiology 17, 414–422.
Infrequent marine–freshwater transitions in the microbial world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFajtrnF&md5=1b8158201dd37ddedbd038c64dec43d5CAS | 19726194PubMed |

Mackie, R. I., Rycyk, M., Ruemmler, R. L., Aminov, R. I., and Wikelski, M. (2004). Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos Archipelago. Physiological and Biochemical Zoology 77, 127–138.
Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos Archipelago.Crossref | GoogleScholarGoogle Scholar | 15057723PubMed |

Martin, G. W. (1922). Rhizophydium polysiphoniae in the United States. Botanical Gazette 73, 236–238.
Rhizophydium polysiphoniae in the United States.Crossref | GoogleScholarGoogle Scholar |

Miller, C. E. (1976). Substrate influenced morphological variations and taxonomic problems in freshwater, posteriorly uniflagellate phycomycetes. In ‘Recent Advances in Aquatic Mycology’. (Ed. E. B. G. Jones.) pp. 459–487. (Elek Science: London.)

Mozley-Standridge, S. E., Letcher, P. M., Longcore, J. E., Porter, D., and Simmons, R. (2009). Cladochytriales – a new order in Chytridiomcota. Mycological Research 113, 498–507.
Cladochytriales – a new order in Chytridiomcota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOjtLk%3D&md5=dbf79740f98fe66a079fc47468d094eaCAS | 19422076PubMed |

Muehlstein, L. K., Amon, J. P., and Leffler, D. L. (1987). Phototaxis in the marine fungus Rhizophlyctis littoreum. Applied and Environmental Microbiology 53, 1819–1821.
| 1:STN:280:DC%2BC3crotV2htQ%3D%3D&md5=13d733e545bd735d11681f69d32b468bCAS | 16347407PubMed |

Muehlstein, L. K., Amon, J. P., and Leffler, D. L. (1988). Chemotaxis in the marine fungus Rhizophydium littoreum. Applied and Environmental Microbiology 54, 1668–1672.
| 1:CAS:528:DyaL1cXltVOlsL4%3D&md5=d91193c368a7544a2d8942409cdec1c5CAS | 16347677PubMed |

Müller, D. G., Küpper, F. C., and Küpper, H. (1999). Infection experiments reveal broad host ranges of Eurychasma dichsonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycological Research 47, 217–223.
Infection experiments reveal broad host ranges of Eurychasma dichsonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota), two eukaryotic parasites in marine brown algae (Phaeophyceae).Crossref | GoogleScholarGoogle Scholar |

Nagano, Y., Nagahama, T., Hatada, Y., Nunoura, T., Takami, H., et al. (2010). Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecology 3, 316–325.
Fungal diversity in deep-sea sediments – the presence of novel fungal groups.Crossref | GoogleScholarGoogle Scholar |

Nielsen, T. A. B. (1982). Comparative studies of the physiology of Allomyces species. Transactions of the British Mycological Society 78, 83–88.
Comparative studies of the physiology of Allomyces species.Crossref | GoogleScholarGoogle Scholar |

Nyvall, P., Pedersén, M., and Longcore, J. (1999). Thalassochytrium gracilariopsidis (Chytridiomycota), gen. et sp. nov., endosymbiotic in Gracilariopsis sp. (Rhodophyceae). Journal of Phycology 35, 176–185.
Thalassochytrium gracilariopsidis (Chytridiomycota), gen. et sp. nov., endosymbiotic in Gracilariopsis sp. (Rhodophyceae).Crossref | GoogleScholarGoogle Scholar |

Parodi, E. R., Cáceres, E. J., Westermeier, R., and Müller, D. G. (2010). Secondary zoospores in the algal endoparasite Maullinia ectocarpii (Plasmodiophoromycota). Biocell 34, 45–52.
| 20506630PubMed |

Paterson, R. A. (1963). Observations on two species of Rhizophydium from northern Michigan. Transactions of the British Mycological Society 46, 530–536.
Observations on two species of Rhizophydium from northern Michigan.Crossref | GoogleScholarGoogle Scholar |

Porter, D., and Kirk, P. W., Jr (1987). Marine fungi: taxonomic and ecological considerations II. Lower fungi. In ‘Frontiers in Applied Microbiology, vol. 2’. (Eds K. G. Mulherj, V. P. Singh and K. L. Garb.) pp. 235–256. (Print House: Lucknow, India.)

Porter, D., and Smiley, R. (1980). Development of the sporangium and discharge apparatus in a marine chytrid, Phlyctochytrium sp. Botanica Marina 23, 99–116.
Development of the sporangium and discharge apparatus in a marine chytrid, Phlyctochytrium sp.Crossref | GoogleScholarGoogle Scholar |

Powell, M. J. (1993). Looking at mycology with a janus face: a glimpse at Chytridiomycetes active in the environment. Mycologia 85, 1–20.
Looking at mycology with a janus face: a glimpse at Chytridiomycetes active in the environment.Crossref | GoogleScholarGoogle Scholar |

Powell, M. J., and Koch, W. J. (1977). Morphological variations in a new species of Entophlyctis I: the species concept. Canadian Journal of Botany 55, 1668–1685.
Morphological variations in a new species of Entophlyctis I: the species concept.Crossref | GoogleScholarGoogle Scholar |

Powell, M. J., and Koch, W. J. (1977). Morphological variations in a new species of Entophlyctis II: influence of growth conditions on morphology. Canadian Journal of Botany 55, 1686–1695.
Morphological variations in a new species of Entophlyctis II: influence of growth conditions on morphology.Crossref | GoogleScholarGoogle Scholar |

Raghukumar, C. (1987). Fungal parasites of marine algae from Mandapam (south India). Diseases of Aquatic Organisms 3, 137–145.
Fungal parasites of marine algae from Mandapam (south India).Crossref | GoogleScholarGoogle Scholar |

Raghukumar, S. (2002). Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). European Journal of Protistology 38, 127–145.
Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids).Crossref | GoogleScholarGoogle Scholar |

Rezaeian, M., Beakes, G. W., and Parker, D. S. (2004). Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems. Mycological Research 108, 1215–1226.
Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Clu7s%3D&md5=d26f38604acc049df16f3dad548ecef7CAS | 15535072PubMed |

Robertson, J. A. (1972). Phototaxis in a new Allomyces. Archiv für Mikrobiologie 85, 259–266.
Phototaxis in a new Allomyces.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FitV2kug%3D%3D&md5=b1e0aeefc56b11603ae5c2e7915af5ccCAS | 5077813PubMed |

Salomon, P. S., Granéli, E., Neves, M. C. B., and Rodriguez, E. G. (2009). Infection by Amoebophyra spp. parasitoids of dinoflagellates in a tropical marine coastal area. Aquatic Microbial Ecology 55, 143–153.
Infection by Amoebophyra spp. parasitoids of dinoflagellates in a tropical marine coastal area.Crossref | GoogleScholarGoogle Scholar |

Saranak, J., and Foster, K. W. (1997). Rhodopsin guides fungal phototaxis. Nature 387, 465–466.
Rhodopsin guides fungal phototaxis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsF2jurc%3D&md5=f34a48af69df76b0421e5193c0ca311fCAS | 9168108PubMed |

Shearer, C. A., Descals, E., Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., et al. (2007). Fungal biodiversity in aquatic habitats. Biodiversity and Conservation 16, 49–67.
Fungal biodiversity in aquatic habitats.Crossref | GoogleScholarGoogle Scholar |

Shields, J. D. (1990). Rhizophydium littoreum on the eggs of Cancer anthonyi: parasite or saprobe? The Biological Bulletin 179, 201–206.
Rhizophydium littoreum on the eggs of Cancer anthonyi: parasite or saprobe?Crossref | GoogleScholarGoogle Scholar |

Sime-Ngando, T., Lefèvre, E., and Gleason, F. H. (2011). Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. Hydrobiologia 659, 5–22.
Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ktLrJ&md5=36bfd4aed4f6bfd0c3794737a3059c04CAS |

Simmons, D. R., James, T. Y., Meyer, A. F., and Longcore, J. E. (2009). Lobulomycetales, a new order in the Chytridiomycota. Mycological Research 113, 450–460.
Lobulomycetales, a new order in the Chytridiomycota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOjtL0%3D&md5=8e03529d7ca8c0f5a6ae8ac9a0a1f320CAS | 19138737PubMed |

Sparrow, F. K., Jr (1960). ‘Aquatic Phycomycetes.’ 2nd edn. (University of Michigan Press: Ann Arbor, MI.)

Strittmatter, M., Gachon, C. M. M., and Küpper, F. C. (2008). Ecology of lower oomycetes. In ‘Oomycete Genetics and Genomics: Diversity, Plant and Animal Interactions, and Toolbox’. (Eds K. Lamour and K. S. Kamoun.) pp. 25–46. (John Wiley & Sons, Inc.: Hoboken, NJ.)

Sverdrup, H. U., Johnson, M. W., and Fleming, R. (1942). ‘The Oceans: Their Physics, Chemistry and General Biology.’ (Prentice-Hall, Inc.: Englewood Cliffs, NJ.)

Thorsen, M. S. (1999). Abundance and biomass of the gut-living microorganisms (bacteria, protozoa and fungi) in the irregular sea urchin Echinocardium cordatum (Spatangoida: Echinodermata). Marine Biology 133, 353–360.
Abundance and biomass of the gut-living microorganisms (bacteria, protozoa and fungi) in the irregular sea urchin Echinocardium cordatum (Spatangoida: Echinodermata).Crossref | GoogleScholarGoogle Scholar |

Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M., Nielsen, B. B., et al. (1994). Anaerobic fungi in herbivorous animals. Mycological Research 98, 129–152.
Anaerobic fungi in herbivorous animals.Crossref | GoogleScholarGoogle Scholar |

Wakefield, W. S., Powell, M. J., Letcher, P. M., Barr, D. J. S., Churchill, P. F., et al. (2010). A molecular phylogenetic evaluation of the Spizellomycetales. Mycologia 102, 596–604.
A molecular phylogenetic evaluation of the Spizellomycetales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1arsrc%3D&md5=593d19ed0e4711c8609315dc6f7c3937CAS | 20524592PubMed |