Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation

John D. Koehn A E , Alistair J. Hobday B , Morgan S. Pratchett C and Bronwyn M. Gillanders D
+ Author Affiliations
- Author Affiliations

A Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment, 123 Brown Street, Heidelberg, Vic. 3084, Australia.

B Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Hobart, Tas. 7001, Australia.

C ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.

D Southern Seas Ecology Laboratories, School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia.

E Corresponding author. Email: john.koehn@dse.vic.gov.au

Marine and Freshwater Research 62(9) 1148-1164 https://doi.org/10.1071/MF11139
Submitted: 16 June 2011  Accepted: 10 August 2011   Published: 21 September 2011

Abstract

Anthropogenic climate change is already apparent and will have significant, ongoing impacts on Australian fishes and their habitats. Even with immediate actions to reduce greenhouse gases, there will be sustained environmental changes. Therefore, it is necessary to consider appropriate adaptations to minimise detrimental impacts for both fishes and the human populations that utilise them. Climate change will have a range of direct effects on the physiology, fitness, and survivorship of Australia’s marine, estuarine and freshwater fishes, but also indirect effects via habitat degradation and changes to ecosystems. Effects will differ across populations, species and ecosystems, with some impacts being complex and causing unexpected outcomes. The range of adaptation options and necessary levels of intervention to maintain populations and ecosystem function will largely depend on the vulnerability of species and habitats. Climate change will also have an impact on people who depend on fishes for food or livelihoods; adapting to a new climate regime will mean trade-offs between biological assets and socioeconomic drivers. Models can be used to help predict trends and set priorities; however, they must be based on the best available science and data, and include fisheries, environmental, socioeconomic and political layers to support management actions for adaptation.

Additional keywords: adaptation, climate, estuaries, impacts, Indo Pacific, management.


References

Abelson, A. (2006). Artificial reefs vs coral transplantation as restoration tools for mitigating coral reef deterioration: benefits, concerns and proposed guidelines. Bulletin of Marine Science 78, 151–159.

Aldous, A., Fitzsimons, J., Richter, B., and Bach, L. (2011). Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies. Marine and Freshwater Research 62, 223–231.
Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies.CrossRef | 1:CAS:528:DC%2BC3MXjsVKktrw%3D&md5=6a1ffe0cf925eda9340ec29be4eee8f8CAS |

Allen, G. R., Midgely, S. H., and Allen, M. (2002). ‘Field Guide to the Freshwater Fishes of Australia.’ (Western Australia Museum: Perth.)

Allison, E. H., Perry, A. L., Badjeck, M.-C., Adger, W. N., Brown, K., Halls, A. S., Pilling, G. M., Reynolds, J. D., Andrew, N. L., and Dulvy, N. K. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries 10, 173–196.
Vulnerability of national economies to the impacts of climate change on fisheries.CrossRef |

Balcombe, S. R., Sheldon, F., Capon, S. J., Bond, N. R., Hadwen, W. L., Marsh, N., and Bernays, S. J. (2011). Climate-change threats to native fish in degraded rivers and floodplains of the Murray–Darling Basin, Australia. Marine and Freshwater Research 62, 1099–1114.
Climate-change threats to native fish in degraded rivers and floodplains of the Murray–Darling Basin, Australia.CrossRef |

Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (Eds) (2008). ‘Climate Change and Water. Paper of the Intergovernmental Panel on Climate Change.’ (IPCC Secretariat: Geneva.)

Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., Halpern, B., Hays, C. G., Hoshino, K., Minello, T. J., Orth, R. J., Sheridan, P. F., and Weinstein, M. P. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641.
The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.CrossRef |

Beck, M. W., Brumbaugh, R. D., Airoldi, L., Carranza, A., Coen, L. D., Crawford, C., Defeo, O., Edgar, G. J., Hancock, B., Kay, M. C., Lenihan, H. S., Luckenbach, M. W., Toropova, C. L., Zhang, G., and Guo, X. (2011). Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116.
Oyster reefs at risk and recommendations for conservation, restoration, and management.CrossRef |

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S. (2006). Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755.
Climate-driven trends in contemporary ocean productivity.CrossRef | 1:CAS:528:DC%2BD28Xht1Ontb3M&md5=27c4d34b7d6d360938ad6fa0b17b3d8eCAS |

Bell, J. D., Kronen, M., Vunisea, A., Nash, W. J., Keeble, G., Demmke, A., Pontifex, S., and Andréfouet, S. (2009). Planning the use of fish for food security in the Pacific. Marine Policy 33, 64–76.
Planning the use of fish for food security in the Pacific.CrossRef |

Bell, J., Johnson, J., and Hobday, A. (Eds) (2011). ‘Vulnerability of Fisheries and Aquaculture in the Pacific to Climate Change.’ (Secretariat of the Pacific Community: Noumea Cedex.)

Bond, N. R., Lake, P. S., and Arthington, A. H. (2008). The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600, 3–16.
The impacts of drought on freshwater ecosystems: an Australian perspective.CrossRef |

Bond, N., Thomson, J., Reich, P., and Stein, J. (2011). Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research 62, 1043–1061.
Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia.CrossRef |

Booth, D. J., Bond, N., and Macreadie, P. (2011). Detecting range shifts among Australian fishes in response to climate change. Marine and Freshwater Research 62, 1027–1042.
Detecting range shifts among Australian fishes in response to climate change.CrossRef |

Brander, K. M. (2007). Climate change and food security special feature: global fish production and climate change. Proceedings of the National Academy of Sciences, USA 104, 19?709–19?714.
Climate change and food security special feature: global fish production and climate change.CrossRef | 1:CAS:528:DC%2BD1cXitFSltQ%3D%3D&md5=9880833ae7c80313735f426cecd5f1e2CAS |

Brander, K. (2010). Impacts of climate change on fisheries. Journal of Marine Systems 79, 389–402.
Impacts of climate change on fisheries.CrossRef |

Brewer, P. G., and Peltzer, E. T. (2009). Limits to marine life. Science 324, 347–348.
Limits to marine life.CrossRef | 1:CAS:528:DC%2BD1MXltFant7g%3D&md5=1896181d98cb614a66153e780b29d4ccCAS |

Bromage, N., Porter, M., and Randall, C. (2001). The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture 197, 63–98.
The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin.CrossRef | 1:CAS:528:DC%2BD3MXjsFalsb0%3D&md5=89a575d6b5bc291ba0d8f7a77373c3baCAS |

Carpenter, S. R., Fisher, S. G., Grimm, N. B., and Kitchell, J. F. (1992). Global change and freshwater ecosystems. Annual Review of Ecology and Systematics 23, 119–139.
Global change and freshwater ecosystems.CrossRef |

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., and Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16, 24–35.
Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change.CrossRef |

Connell, S. D., and Russell, B. D. (2010). The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society B, Biological Sciences 277, 1409–1415.
The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests.CrossRef |

Connell, S. D., Russell, B. D., Turner, D. J., Shepherd, S. A., Kildea, T., Miller, D., Airoldi, L., and Cheshire, A. (2008). Recovering a lost baseline: missing kelp forests from a metropolitan coast. Marine Ecology Progress Series 360, 63–72.
Recovering a lost baseline: missing kelp forests from a metropolitan coast.CrossRef |

Cooke, S. J., and Cowx, I. G. (2004). The role of recreational fishing in the global fish crisis. Bioscience 54, 857–859.
The role of recreational fishing in the global fish crisis.CrossRef |

Crook, D. A., Reich, P., Bond, N. R., McMaster, D., Koehn, J. D., and Lake, P. S. (2010). Using biological information to support proactive strategies for managing freshwater fish during drought. Marine and Freshwater Research 61, 379–387.
Using biological information to support proactive strategies for managing freshwater fish during drought.CrossRef | 1:CAS:528:DC%2BC3cXjvFSjs7g%3D&md5=80d269acaf21f989f18f33c88f071d64CAS |

CSIRO (2008). Water availability in the Murray–Darling Basin. A report to the Australian Government from the CSIRO Murray–Darling Basin Sustainable Yields Project, CSIRO, Canberra.

CSIRO (2011). Climate change: science and solutions for Australia. CSIRO, Canberra. Available at www.csiro.au/resources/Climate-Change-Book.html [accessed 9 June 2011].

Davidson, I., and Simkanin, C. (2008). Skeptical of assisted colonization. Science 322, 1048–1049.
Skeptical of assisted colonization.CrossRef | 1:CAS:528:DC%2BD1cXhsVegsL3F&md5=a7c99f3d40c44e3edacdba2985f7b149CAS |

Davis, G. E. (1995). Recruitment of juvenile abalone (Haliotis spp.) measured in artificial habitats. Marine and Freshwater Research 46, 549–554.
Recruitment of juvenile abalone (Haliotis spp.) measured in artificial habitats.CrossRef |

Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58.
Beyond predictions: biodiversity conservation in a changing climate.CrossRef | 1:CAS:528:DC%2BC3MXjvVyisbk%3D&md5=d2ff014b49e420753bbcae68d31c18edCAS |

Donelson, J. M., Munday, P. L., McCormick, M. I., Pankhurst, N. W., and Pankhurst, P. M. (2010). Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Marine Ecology Progress Series 401, 233–243.
Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish.CrossRef |

Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J.-F., and Rasch, P. J. (2007). The impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences, USA 104, 14 580–14 585.
The impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.CrossRef | 1:CAS:528:DC%2BD2sXhtVOlt7bI&md5=97274467032576adf438233df9485c3fCAS |

Doody, J. P. (2004). ‘Coastal squeeze’ – an historical perspective. Journal of Coastal Conservation 10, 129–138.
‘Coastal squeeze’ – an historical perspective.CrossRef |

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, threats, status and conservation challenges.CrossRef |

Elliott, M., Whitfield, A. K., Potter, I. C., Blaber, S. J. M., Cyrus, D. P., Nordlie, F. G., and Harrison, T. D. (2007). The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8, 241–268.
The guild approach to categorizing estuarine fish assemblages: a global review.CrossRef |

Fulton, E. A. (2010). Approaches to end-to-end models. Journal of Marine Systems 81, 171–183.
Approaches to end-to-end models.CrossRef |

Gaines, S. D., Gaylord, B., Gerber, L. R., Hastings, A., and Kinlan, B. P. (2007). Connecting places. The ecological consequences of dispersal in the sea. Oceanography 20, 90–99.

Gehrke, P. C., and Harris, J. H. (2000). Large-scale patterns in species richness and composition of temperate riverine fish communities. Marine and Freshwater Research 51, 165–182.
Large-scale patterns in species richness and composition of temperate riverine fish communities.CrossRef |

Gillanders, B. M., and Kingsford, M. J. (2002). Impact of changes in flow of freshwater on estuarine and open coastal habitats and the associated organisms. Oceanography and Marine Biology: an Annual Review 40, 233–309.

Gillanders, B. M., Elsdon, T. S., Halliday, I. A., Jenkins, G. P., Robins, J. B., and Valesini, F. J. (2011). Potential effects of climate change on Australian estuaries and fish-utilising estuaries: a review. Marine and Freshwater Research 62, 1115–1131.
Potential effects of climate change on Australian estuaries and fish-utilising estuaries: a review.CrossRef |

Gillson, J. (2011). Freshwater flow and fisheries production in estuarine and coastal systems: where a drop of rain is not lost. Reviews in Fisheries Science 19, 168–186.
Freshwater flow and fisheries production in estuarine and coastal systems: where a drop of rain is not lost.CrossRef |

Goreau, T. F., McClanahan, T., Hayes, R. L., and Strong, A. (2000). Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology 14, 5–15.
Conservation of coral reefs after the 1998 global bleaching event.CrossRef |

Gorman, D., Russell, B. D., and Connell, S. D. (2009). Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts. Ecological Applications 19, 1114–1126.
Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts.CrossRef |

Hadwen, W. L., and Bunn, S. E. (2004). Tourists increase the contribution of autochthonous carbon to littoral zone food webs in oligotrophic dune lakes. Marine and Freshwater Research 55, 701–708.
Tourists increase the contribution of autochthonous carbon to littoral zone food webs in oligotrophic dune lakes.CrossRef |

Harley, C. D. G., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C. S., Rodriguez, L. F., Tomanek, L., and Williams, S. L. (2006). The impacts of climate change in coastal marine systems. Ecology Letters 9, 228–241.
The impacts of climate change in coastal marine systems.CrossRef |

Henry, G. W., and Lyle, J. M. (2003). ‘The National Recreational and Indigenous Fishing Survey. FRDC Project No. 99/158.’ (Australian Government Department of Agriculture, Fisheries and Forestry: Canberra.)

Hilder, M. L., and Pankhurst, N. W. (2003). Evidence that temperature change cues reproductive development in the spiny damselfish, Acanthochromis polyacanthus. Environmental Biology of Fishes 66, 187–196.
Evidence that temperature change cues reproductive development in the spiny damselfish, Acanthochromis polyacanthus.CrossRef |

Hobday, A. J. (2010). Ensemble analysis of the future distribution of large pelagic fishes in Australia. Progress in Oceanography 86, 291–301.
Ensemble analysis of the future distribution of large pelagic fishes in Australia.CrossRef |

Hobday, A. J., and Lough, J. M. (2011). Projected climate change in Australian marine and freshwater environments. Marine and Freshwater Research 62, 1000–1014.
Projected climate change in Australian marine and freshwater environments.CrossRef |

Hobday, A. J., Poloczanska, E. S., and Matear, R. (2008). Implications of climate change for Australian fisheries and aquaculture: a preliminary assessment. Report to the Department of Climate Change, Canberra, Australia. Available at http.//www.cmar.csiro.au/climateimpacts/reports.htm [accessed 8 June 2011].

Hoegh-Guldberg, O. (2004). Coral reefs in a century of rapid environmental change. Symbiosis 37, 1–31.

Hoegh-Guldberg, O., and Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528.
The impact of climate change on the world’s marine ecosystems.CrossRef | 1:CAS:528:DC%2BC3cXnsVWnt7Y%3D&md5=a2e5b8b5397c5584684eafb902fb3e95CAS |

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvel, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742.
Coral reefs under rapid climate change and ocean acidification.CrossRef | 1:CAS:528:DC%2BD2sXhsVWhu7fN&md5=b074c829a513c1a5f7a4dd1596f39ea3CAS |

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., and Thomas, C. D. (2008). Assisted colonisation and rapid climate change. Science 321, 345–346.
Assisted colonisation and rapid climate change.CrossRef | 1:STN:280:DC%2BD1cvlvFWqsg%3D%3D&md5=2fd0e496e29dfd4ac47d0598881a15e6CAS |

Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology 28, 423–443.
Climate change and Australia: trends, projections and impacts.CrossRef |

Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., and Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933.
Climate change, human impacts, and the resilience of coral reefs.CrossRef | 1:CAS:528:DC%2BD3sXmt1elsb4%3D&md5=51509a1cdf062823fc9b4614ec8c4f8fCAS |

Hulme, P. E. (2005). Adapting to climate change: is there scope for ecological management in the face of a global threat? Journal of Applied Ecology 42, 784–794.
Adapting to climate change: is there scope for ecological management in the face of a global threat?CrossRef |

IPCC (1995) IPCC second assessment. Climate change 1995. A report of the Intergovernmental Panel on Climate Change. Available at http://www.ipcc.ch/pdf/climate-changes-1995/ipcc-2nd-assessment/2nd-assessment-en.pdf [accessed 8 June 2011].

IPCC (2001). IPCC third assessment report. Climatic change 2001. Available at www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml [accessed 8 June 2011].

IPCC (2007). ‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, UK.)

Jaap, W. C. (2000). Coral reef restoration. Ecological Engineering 15, 345–364.
Coral reef restoration.CrossRef |

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., and Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637.
Historical overfishing and the recent collapse of coastal ecosystems.CrossRef | 1:CAS:528:DC%2BD3MXls1Khu7o%3D&md5=f44c167fa2cc9b6564255af8f98a5d44CAS |

Jackson, L. J. (2011). Conservation of shallow lakes given an uncertain, changing climate: challenges and opportunities. Aquatic Conservation: Marine and Freshwater Ecosystems 21, 219–223.

Jiang, L. Q., Cai, W. J., and Wang, Y. C. (2008). A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnology and Oceanography 53, 2603–2615.
A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries.CrossRef | 1:CAS:528:DC%2BD1cXhsVOgu7nE&md5=e07852ffca329ce74109ac8977ac0658CAS |

Jokiel, P. L., and Coles, S. L. (1990). Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8, 155–162.
Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature.CrossRef |

Koehn, J. (2005). The loss of valuable Murray cod in fish kills: a science and management perspective. In ‘Management of Murray Cod in the Murray–Darling Basin: Statement, Recommendations and Supporting Papers. Proceedings of a Workshop Held in Canberra, ACT, 3–4 June 2004’. (Eds M. Lintermans and B. Phillips.) pp. 73–82. (Murray–Darling Basin Commission and Cooperative Research Centre for Freshwater Ecology: Canberra.) Available at www2.mdbc.gov.au/NFS/nfs_publications.html [accessed 8 June 2011].

Koehn, J. D. (2011). Climate change and Australian marine and freshwater environments, fishes and fisheries: introduction. Marine and Freshwater Research 62, 981–983.
Climate change and Australian marine and freshwater environments, fishes and fisheries: introduction.CrossRef |

Koehn, J., Stuart, I., and Crook, D. (2004). Linking the ecological importance of downstream fish movements to management of Murray–Darling Basin fish populations. In ‘Management of Murray Cod in the Murray–Darling Basin: Statement, Recommendations and Supporting Papers. Proceedings of a Workshop Held in Canberra, ACT, 3–4 June 2004’. (Eds M. Lintermans and B. Phillips.) pp. 67–78. (Murray–Darling Basin Commission and Cooperative Research Centre for Freshwater Ecology: Canberra.) Available at www2.mdbc.gov.au/NFS/nfs_publications.html [accessed 8 June 2011].

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., and Peci, G. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20, 58–72.
Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices.CrossRef |

Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., and Picaut, J. (1997). El Niño Southern Oscillation and tuna in the western Pacific. Nature 389, 715–718.
El Niño Southern Oscillation and tuna in the western Pacific.CrossRef | 1:CAS:528:DyaK2sXmvVSht70%3D&md5=d9af2ad15fefac46942c59c7ee71572aCAS |

Levin, L. A., Talley, D., and Thayer, G. (1996). Succession of macrobenthos in a created saltmarsh. Marine Ecology Progress Series 141, 67–82.
Succession of macrobenthos in a created saltmarsh.CrossRef |

Ligare, S. T., Viers, J. H., Null, S. E., Rheinheimer, D. E., and Mount, J. F. (2011). Non-uniform changes to whitewater recreation in California’s Sierra Nevada from regional climate warming. River Research and Applications , .
Non-uniform changes to whitewater recreation in California’s Sierra Nevada from regional climate warming.CrossRef |

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009). Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.CrossRef |

Lintermans, M. (2010). Conservation status of Australian fishes – 2010. Australian Society for Fish Biology Newsletter 40, 79–82.

Lorenzen, T., Leber, K. M., and Blankenship, H. L. (2010). Responsible approach to marine stock enhancement: an update. Reviews in Fisheries Science 18, 189–210.
Responsible approach to marine stock enhancement: an update.CrossRef |

Lough, J. M., and Hobday, A. J. (2011). Observed climate change in Australian marine and freshwater environments. Marine and Freshwater Research 62, 984–999.
Observed climate change in Australian marine and freshwater environments.CrossRef |

Lovelock, C. E., and Ellison, J. C. (2007). Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In ‘Climate change and the Great Barrier Reef: A vulnerability assessment.’ (Eds J. E. Johnson, and P. A. Marshall) pp. 237–269. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Townsville)

Madin, J. S., and Connolly, S. R. (2006). Ecological consequences of major hydrological disturbances on coral reefs. Nature 444, 477–480.
Ecological consequences of major hydrological disturbances on coral reefs.CrossRef | 1:CAS:528:DC%2BD28Xht1aku7zP&md5=04736d1b2272d19b660781f637a700f4CAS |

Marshall, N. A. (2010). Understanding social resilience to climate variability in primary enterprises and industries. Global Environmental Change 20, 36–43.
Understanding social resilience to climate variability in primary enterprises and industries.CrossRef |

Meffe, G. K. (1992). Techno-arrogance and halfway technologies: salmon hatcheries on the Pacific Coast of North America. Conservation Biology 6, 350–354.
Techno-arrogance and halfway technologies: salmon hatcheries on the Pacific Coast of North America.CrossRef |

Meyer, J. L., Sale, M. J., Mulholland, P. J., and Poff, N. L. (1999). Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35, 1373–1386.
Impacts of climate change on aquatic ecosystem functioning and health.CrossRef |

Miller, A. W., Reynolds, A. C., Sobrino, C., and Riedel, G. F. (2009). Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4, e5661.
Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries.CrossRef |

Minteer, B. A., and Collins, J. P. (2010). Move it or lose it? The ecological ethics of relocating species under climate change. Ecological Applications 20, 1801–1804.
Move it or lose it? The ecological ethics of relocating species under climate change.CrossRef |

Morrongiello, J. R., Crook, D. A., King, A. J., Ramsey, D. S., and Brown, P. (2011a). Impacts of drought and predicted effects of climate change on fish growth in temperate Australian lakes. Global Change Biology 17, 745–755.
Impacts of drought and predicted effects of climate change on fish growth in temperate Australian lakes.CrossRef |

Morrongiello, J. R., Beatty, S. J., Bennett, J. C., Crook, D. A., Ikedife, D. N. E. N., Kennard, M. J., Kerezsy, A., Lintermans, M., McNeil, D. G., Pusey, B. J., and Rayner, T. (2011b). Climate change and its implications for Australia’s freshwater fish. Marine and Freshwater Research 62, 1082–1098.
Climate change and its implications for Australia’s freshwater fish.CrossRef |

Morrongiello, J. R., Bond, N. R., Crook, D. A., and Wong, B. B. M. (2011c). Eucalyptus leachate inhibits reproduction in a freshwater fish. Freshwater Biology , .
Eucalyptus leachate inhibits reproduction in a freshwater fish.CrossRef |

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. F., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchel, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature 463, 747–756.
The next generation of scenarios for climate change research and assessment.CrossRef | 1:CAS:528:DC%2BC3cXhvVKqs7w%3D&md5=4695ffc4d8a122b482b24da99ae49afaCAS |

Munday, P. L., Jones, G. P., Pratchett, M. S., and Williams, A. (2008). Climate change and the future for coral reef fishes. Fish and Fisheries 9, 261–285.
Climate change and the future for coral reef fishes.CrossRef |

Munday, P. L., Leis, J. M., Lough, J. M., Paris, C. B., Kingsford, M. J., Berumen, M. L., and Lambrechts, J. (2009). Climate change and coral reef connectivity. Coral Reefs 28, 379–395.
Climate change and coral reef connectivity.CrossRef |

Murphy, B. F., and Timbal, B. (2008). A review of recent climate variability and climate change in southeastern Australia. International Journal of Climatology 28, 859–879.
A review of recent climate variability and climate change in southeastern Australia.CrossRef |

Murray–Darling Basin Commission (2004). ‘Native Fish Strategy for the Murray–Darling Basin 2003–2013.’ (Murray–Darling Basin Commission: Canberra.) Available at www.mdbc.gov.au [accessed 8 June 2011].

Naithani, J., Plisnier, P.-D., and Deleersnijder, E. (2011). Possible effects of global climate change on the ecosystem of Lake Tanganyika. Hydrobiologia 671, 147–163.
Possible effects of global climate change on the ecosystem of Lake Tanganyika.CrossRef |

Nicol, S. J., Lieschke, J., Lyon, J., and Koehn, J. D. (2004). Observations on the distribution and abundance of carp and native fish, and their responses to a habitat restoration trial in the Murray River, Australia. New Zealand Journal of Marine and Freshwater Research 38, 541–551.
Observations on the distribution and abundance of carp and native fish, and their responses to a habitat restoration trial in the Murray River, Australia.CrossRef |

Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R., and Richardson, A. J. (2009). Variability of biological production in low wind-forced regional upwelling systems: a case study off southeastern Australia. Limnology and Oceanography 54, 1548–1558.
Variability of biological production in low wind-forced regional upwelling systems: a case study off southeastern Australia.CrossRef |

Noell, C. J., Ye, Q., Short, D. A., Bucater, L. B., and Wellman, N. R. (2009). Fish assemblages of the Murray Mouth and Coorong region, South Australia, during an extended drought period. CSIRO, Water for a Healthy Country National Research Flagship, Canberra.

Norman-Lopez, A., Pascoe, S., and Hobday, A. J. (In press). Economic impacts of ignoring climate change for Australian fisheries and associated sectors. Climate Change Economics. , .

Olden, J. D., Kennard, M. J., Lawler, J. J., and Poff, N. L. (2011). Challenged and opportunities in implementing managed relocation for conservation of freshwater species. Conservation Biology 25, 40–47.
Challenged and opportunities in implementing managed relocation for conservation of freshwater species.CrossRef |

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.CrossRef | 1:CAS:528:DC%2BD2MXhtVCjsL%2FE&md5=9390bc0fada8743ec20f80a7ffe47e99CAS |

Ottersen, G., Hjermann, D., and Stenseth, N. C. (2006). Changes in spawning stock structure strengthens the link between climate and recruitment in a heavily fished cod stock. Fisheries Oceanography 15, 230–243.
Changes in spawning stock structure strengthens the link between climate and recruitment in a heavily fished cod stock.CrossRef |

Pankhurst, N. W., and King, H. R. (2010). Temperature and salmonid reproduction: implications for aquaculture. Journal of Fish Biology 76, 69–85.
Temperature and salmonid reproduction: implications for aquaculture.CrossRef | 1:STN:280:DC%2BC3cjnsV2qtQ%3D%3D&md5=d0d625b57b8a103bea2b8bc79dc91636CAS |

Pankhurst, N. W., and Munday, P. L. (2011). Effects of climate change on fish reproduction and early life history stages. Marine and Freshwater Research 62, 1015–1026.
Effects of climate change on fish reproduction and early life history stages.CrossRef |

Perry, A. L., Low, P. J., Ellis, J. R., and Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science 308, 1912–1915.
Climate change and distribution shifts in marine fishes.CrossRef | 1:CAS:528:DC%2BD2MXlsVWmtbg%3D&md5=b99cf337ddaccb32659fd2b7ab3c4576CAS |

Pittock, J., Hansen, L. J., and Abell, R. (2008). Running dry: freshwater biodiversity, protected areas and climate change. Biodiversity 9, 30–38.

Plagányi, E. E., Bell, J. D., Bustamante, R. H., Dambacher, J. M., Dennis, D. M., Dichmont, C. M., Dutra, L. X. C., Fulton, E. A., Hobday, A. J., van Putten, E. I., Smith, F., Smith, A. D. M., and Zhou, S. (2011). Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Marine and Freshwater Research 62, 1132–1147.
Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications.CrossRef |

Poloczanska, E. S., Babcock, R. C., Butler, A., Hobday, A. J., Hoegh-Guldberg, O., Kunz, T. J., Matear, R., Milton, D. A., Okey, T. A., and Richardson, A. J. (2007). Climate change and Australian marine life. Oceanography and Marine Biology: An Annual Review 45, 407–478.

Polovina, J. J., Howell, E. A., and Abecassis, M. (2008). Ocean’s least productive waters are expanding. Geophysical Research Letters 35, L03618.
Ocean’s least productive waters are expanding.CrossRef |

Pörtner, H. O., and Farrell, A. P. (2008). Physiology and climate change. Science 322, 690–692.
Physiology and climate change.CrossRef |

Pratchett, M. S., Munday, P. L., Wilson, S. K., Graham, N. A. J., Cinner, J. E., Bellwood, D. R., Jones, G. P., Polunin, N. V. C., and Mcclanahan, T. R. (2008). Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanography and Marine Biology: An Annual Review 46, 251–296.
Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences.CrossRef |

Pratchett, M. S., Wilson, S. K., Graham, N. A. J., Munday, M. S., Jones, G. P., Polunin, N. V. (2009). Multi-scale temporal effects of climate-induced coral bleaching on motile reef organisms. In ‘Coral Bleaching: Patterns and Processes, Causes and Consequences’. (Eds M. van Oppen and J. Lough.) pp. 139–158. (Springer-Verlag: Heidelberg, Germany.)

Pratchett, M. S., Bay, L. K., Gehrke, P. C., Koehn, J. D., Osborne, K., Pressey, R. L., Sweatman, H. P. A., and Wachenfeld, D. (2011). Contribution of climate change to degradation and loss of critical fish habitats in Australian marine and freshwater environments. Marine and Freshwater Research 62, 1062–1081.
Contribution of climate change to degradation and loss of critical fish habitats in Australian marine and freshwater environments.CrossRef |

Pusey, B. J., Kennard M. J., and Arthington, A. H. (2004). ‘Freshwater Fishes of North-eastern Australia.’ (CSIRO Publishing: Melbourne.)

Richardson, D. M., Hellmann, J. J., McLachlan, J. S., Sax, D. F., Schwartz, M. W., Gonzalez, P., Brennan, E. J., Camacho, A., Root, T. L., Sala, O. E., Schneider, S. H., Ashe, D. M., Rappaport Clark, J., Early, R., Etterson, J. R., Fielder, E. D., Gill, J. L., Minteer, B. A., Polasky, S., Safford, H. D., Thompson, A. R., and Vellend, M. (2009). Multidimensional evaluation of managed relocation. Proceedings of the National Academy of Sciences, USA 106, 9721–9724.
Multidimensional evaluation of managed relocation.CrossRef | 1:CAS:528:DC%2BD1MXotFGjsr8%3D&md5=f43b29491a927df51a27ef2656996925CAS |

Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., Possingham, H. P., and Richardson, A. J. (2011). Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography , .
Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities.CrossRef |

Roessig, J. M., Woodley, C. M., Cech, J. J., and Hansen, L. J. (2004). Effects of global climate change on marine and estuarine fishes and fisheries. Reviews in Fish Biology and Fisheries 14, 251–275.
Effects of global climate change on marine and estuarine fishes and fisheries.CrossRef |

Rowland, S. J. (2005). Overview of the history, fishery, biology and aquaculture of Murray cod (Maccullochella peelii peellii). In ‘Management of Murray Cod in the Murray–Darling Basin: Statement, Recommendations and Supporting Papers. Proceedings of a Workshop Held in Canberra, ACT, 3–4 June 2004’. (Eds M. Lintermans and B. Phillips.) pp. 38–61. (Murray–Darling Basin Commission and Cooperative Research Centre for Freshwater Ecology: Canberra.) Available at http://www2.mdbc.gov.au/NFS/nfs_publications.html [accessed 8 June 2011].

Russell, B. D., Thompson, J. I., Falkenberg, L. J., and Connell, S. D. (2009). Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Global Change Biology 15, 2153–2162.
Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats.CrossRef |

Schindler, D. W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58, 18–29.
The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium.CrossRef |

Short, F. T., and Neckles, H. A. (1999). The effects of global climate change on seagrasses. Aquatic Botany 63, 169–196.
The effects of global climate change on seagrasses.CrossRef |

Sorte, C. J. B., Williams, S. L., and Carlton, J. T. (2010). Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography 19, 303–316.
Marine range shifts and species introductions: comparative spread rates and community impacts.CrossRef |

Steffen, W. L. (2009). ‘Climatic Change 2009: Faster Change and More Serious Risks.’ (Australian Government, Department of Climate Change: Canberra.)

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., and Tegner, M. J. (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation 29, 436–459.
Kelp forest ecosystems: biodiversity, stability, resilience and future.CrossRef |

Swales, S., Storey, A. W., Roderick, I. D., and Figa, B. S. (1999). Fishes of floodplain habitats of the Fly River system, Papua New Guinea, and changes associated with El Niño droughts and algal blooms. Environmental Biology of Fishes 54, 389–404.
Fishes of floodplain habitats of the Fly River system, Papua New Guinea, and changes associated with El Niño droughts and algal blooms.CrossRef |

Thorp, J. H., Thoms, M. C., and Delong, M. D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22, 123–147.

Thompson, P. A., Baird, M. E., Ingelton, T., and Dublin, M. A. (2009). Long-term changes in temperate Australian coastal waters: implications for phytoplankton. Marine Ecology Progress Series 394, 1–19.
Long-term changes in temperate Australian coastal waters: implications for phytoplankton.CrossRef | 1:CAS:528:DC%2BC3cXotVOmtA%3D%3D&md5=cb15666157e6dd1464014b0c9734ddd1CAS |

Timbal, B., and Jones, D. A. (2008). Future projections of winter rainfall in southeast Australia using a statistical downscaling technique. Climatic Change 86, 165–187.
Future projections of winter rainfall in southeast Australia using a statistical downscaling technique.CrossRef |

Turner, L., Tracey, D., Tilden, J., and Dennison, W. C. (2004). ‘Where River Meets Sea: Exploring Australia’s Estuaries.’ (CRC for Coastal Zone Estuary and Water Management: Brisbane.)

Valiela, I., Bowen, J. L., and York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51, 807–815.
Mangrove forests: one of the world’s threatened major tropical environments.CrossRef |

Valiela, I., Kinney, E., Bulbertson, J., Peacock, E., and Smith, S. (2009). Global losses of mangroves and salt marshes. In ‘Global Loss of Coastal Habitats; Rates, Causes and Consequences.’ (Ed C. M. Duarte) pp. 107–138 (Fundación BBVA: Bilbao.)

Van Dijk, A., Evans, R., Hairsine, P., Khan, S., Nathan, R., Paydar, Z., Viney, N., and Zhang, L. (2006). ‘Risks to the Shared Water Resources of the Murray–Darling Basin’. (Murray-Darling Basin Commission: Canberra.)

Walker, K. F. (1986). The Murray–Darling river system. In ‘The Ecology of River Systems’. (Eds B.R. Davies and K.F. Walker.) pp. 631–659. (Dr W Junk Publishers: Dordrecht, The Netherlands.)

Walker, K. F., Sheldon, F., and Puckridge, J. T. (1995). A perspective on dryland river ecosystems. Regulated Rivers: Research and Management 11, 85–104.
A perspective on dryland river ecosystems.CrossRef |

Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.
Ecological responses to recent climate change.CrossRef | 1:CAS:528:DC%2BD38XislantL8%3D&md5=585bf263e6cdaf7f555072db8bf3257dCAS |

Wang, M., and Overland, J. E. (2009). A sea ice free summer Arctic within 30 years? Geophysical Research Letters 36, L07502.
A sea ice free summer Arctic within 30 years?CrossRef |

Ward, P. J., Beets, W., Bouwer, L. M., Aerts, J. C. J. H., and Renssen, H. (2010). Sensitivity of river discharge to ENSO. Geophysical Research Letters 37, L12402.
Sensitivity of river discharge to ENSO.CrossRef |

Waycott, M., Collier, C., McMahon, K., Ralph, P., McKenzie, L., Udy, J., and Grech, A. (2007). Vulnerability of seagrasses in the Great Barrier Reef to climate change. In ‘Climate Change and the Great Barrier Reef: A Vulnerability Assessment’. (Eds J. E. Johnson and P. A. Marshall.) pp. 193–235. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Townsville.)

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, J. L., Hughes, R. A., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, USA 106, 12 377–12 381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.CrossRef | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=34dbad507adea00cecbd4b5134a0e888CAS |

Williams, J. W., and Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475–482.
Novel climates, no-analog communities, and ecological surprises.CrossRef |

Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., and Polunin, N. V. C. (2006). Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biology 12, 2220–2234.
Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?CrossRef |

Wooldridge, S. A. (2009). Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Marine Pollution Bulletin 58, 745–751.
Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.CrossRef | 1:CAS:528:DC%2BD1MXltFWgtL4%3D&md5=354b158ca6baf31b16f1636cd4dc5f4bCAS |

Worm, B., Oschlies, A., Lotze, H. K., and Myers, R. A. (2005). Global patterns of predator diversity in the open oceans. Science 309, 1365–1369.
| 1:CAS:528:DC%2BD2MXovVOjtL8%3D&md5=e1988d9d7f5ccb6e71653ad5158fffdcCAS |

Xenopoulos, M. A., Lodge, D. M., Alcamo, J., Märker, M., Shulze, K., and Van Vuuren, D. P. (2005). Scenarios of freshwater fish extinctions from climate change and water withdrawl. Global Change Biology 11, 1557–1564.
Scenarios of freshwater fish extinctions from climate change and water withdrawl.CrossRef |


Full Text PDF (309 KB) Export Citation Cited By (50)