Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Basal carbon sources and planktonic food web in a tropical lake: an isotopic approach

Paula C. J. Reis A C , Luiz A. Martinelli B and Francisco A. R. Barbosa A
+ Author Affiliations
- Author Affiliations

A Laboratório de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil.

B Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-000, Piracicaba, Brazil.

C Corresponding author. Email: paulacjr@gmail.com.

Marine and Freshwater Research 68(3) 429-441 https://doi.org/10.1071/MF14322
Submitted: 13 October 2015  Accepted: 9 February 2016   Published: 4 May 2016

Abstract

Trophic connections among habitats may be central to food-web dynamics in lakes. Lacustrine zooplankton can rely on basal carbon (C) sources from different origins and plays an important link between these and organisms in higher trophic levels. We investigated the basal C sources supporting the planktonic food web and the trophic relationships among zooplankton size fractions in a tropical lake (Carioca) in Brazil. To do so, we measured the C and nitrogen (N) stable-isotope ratios in basal C sources originated in terrestrial, littoral, and pelagic habitats and in zooplankton size fractions, and data were analysed through Bayesian mixing models. Mesozooplankton showed seasonal variation in resource use, specifically a smaller dependence on algae in the wet than in the dry season. In the wet season, mesozooplankton relied more on the detritivore food chain eating mostly microzooplankton (mode: 95.1%), which in turn consumed mostly terrestrial C in this season (mode: 74.7%). Zooplankton size fractions also occupied different relative trophic positions between seasons. These variations seem to follow the seasonal dynamics of in-lake primary production and of terrestrial C inputs. Also, all size fractions of zooplankton, and particularly Chaoboridae larvae, showed low C staple-isotope values, suggesting the consumption of a missing C source.

Additional keywords: autochthony and allochthony, energy and material flows, resources use, SIAR.


References

Arcifa, M. S. (2000). Feeding habits of Chaoboridae larvae in a tropical Brazilian reservoir. Brazilian Journal of Biology 60, 591–597.
| 1:STN:280:DC%2BD38%2FivVCitg%3D%3D&md5=f0f51df4388bf3d9237766b39b381ea3CAS |

Ávila, M. P. (2014). Dinâmica de comunidades bacterianas de lagoas do Parque Estadual do Rio Doce. M.Sc. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Barbosa, F. A. R., and Coutinho, M. E. (1987). Taxa de decomposição do material alóctone ‘litter’ na lagoa Carioca, Parque Florestal do Rio Doce, Minas Gerais. Revista Brasileira de Biologia 47, 37–45.

Barbosa, F. A. R., and Padisák, J. (2002). The forgotten lake stratification pattern: atelomixis, and its ecological importance. International Association of Theoretical and Applied Limnology, Proceedings 28, 1385–1395.
| 1:CAS:528:DC%2BD2MXhtVSksLbI&md5=2870acc53c749b023472ed3f4eee8c46CAS |

Barbosa, F. A. R., and Tundisi, J. G. (1980). Primary production of phytoplankton and environmental characteristics of a shallow quaternary lake at eastern Brazil. Archiv für Hydrobiologie 90, 139–161.
| 1:CAS:528:DyaL3MXht1Ojs7g%3D&md5=00ec71e8570ca533d43325f6017c54c3CAS |

Barbosa, F. A. R., Maia-Barbosa, P. M., Pujoni, D. G. F., and Oporto, L. T. (2014). The missing piece in the conservation puzzle: cohesion among environmental, economic and social dimensions. In ‘The Global Water System in the Anthropocene’. (Eds A. Bhaduri, J. Bogardi, J. Leentvaar, S. Marx.) pp. 215–228. (Springer Water.)10.1007/978-3-319-07548-8_15

Barros, C. F. A., Santos, A. M. M., and Barbosa, F. A. R. (2013). Phytoplankton diversity in the middle Rio Doce lake system of southeastern Brazil. Acta Botanica Brasílica 27, 327–346.
Phytoplankton diversity in the middle Rio Doce lake system of southeastern Brazil.CrossRef |

Bastviken, D., Ejlertsson, J., Sundh, I., and Tranvik, L. (2003). Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84, 969–981.
Methane as a source of carbon and energy for lake pelagic food webs.CrossRef |

Berggren, M., Ström, L., Laudon, H., Karlsson, J., Josson, A., Giesler, R., Bergström, A.-K., and Jansson, M. (2010). Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecology Letters 13, 870–880.
Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers.CrossRef | 1:STN:280:DC%2BC3cnnsl2luw%3D%3D&md5=64967ec8248fc8494dad1d96bb46256fCAS | 20482576PubMed |

Berggren, M., Ziegler, S., St-Gelais, N. F., Beisner, B. E., and Del-Giorgio, P. A. (2014). Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95, 1947–1959.
Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes.CrossRef | 25163126PubMed |

Bezerra-Neto, J. (2007). Migração vertical diária e cascata trófica em corpos aquáticos tropicais: influência da larva do díptero Chaoborus. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Bezerra-Neto, J. F., Brighenti, L. S., and Pinto-Coelho, R. M. (2010). A new morphometric study of Carioca Lake, Parque Estadual do Rio Doce (PERD), Minas Gerais State, Brazil. Acta Scientiarum Biological Sciences 32, 49–54.
A new morphometric study of Carioca Lake, Parque Estadual do Rio Doce (PERD), Minas Gerais State, Brazil.CrossRef |

Boschker, H. T. S., and Middelburg, J. J. (2002). Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology 40, 85–95.
Stable isotopes and biomarkers in microbial ecology.CrossRef | 1:CAS:528:DC%2BD38XktVCksLg%3D&md5=b2d957f9e05eeba318d6390537ea69e4CAS |

Brett, M. T., Kainz, M. J., Taipale, S. J., and Seshan, H. (2009). Phytoplankton, not allochthonous carbon, sustain herbivorous zooplankton production. Proceedings of the National Academy of Sciences of the United States of America 106, 21197–21201.
Phytoplankton, not allochthonous carbon, sustain herbivorous zooplankton production.CrossRef | 1:CAS:528:DC%2BC3cXjvFOhsrw%3D&md5=00b8a565e4ad37c7fd4dae46b65b7b6dCAS | 19934044PubMed |

Brighenti, L. S., Staehr, P. A., Gagliardi, L. M., Brandão, L. P. M., Elias, E. C., Mello, N. A. S. T., Barbosa, F. A. R., and Bezerra-Neto, J. F. (2015). Seasonal changes in metabolic rates of two tropical lakes in the Atlantic forest of Brazil. Ecosystems 18, 589–604.
Seasonal changes in metabolic rates of two tropical lakes in the Atlantic forest of Brazil.CrossRef | 1:CAS:528:DC%2BC2MXktlGmtb4%3D&md5=6e1ba3edc6af15cb7832008a4d72557aCAS |

Brito, F. R. A., Oliveira, A. M. H. C., and Junqueira, A. C. (1997). A ocupação e a devastação da Mata Atlântica. In ‘Biodiversidade, População e Economia: uma Região de Mata Atlântica’. (Ed. J. A. Paula.) pp. 49–89. (Rona Editora: Belo Horizonte, Brazil.)

Bunn, S. E., and Boon, P. I. (1993). What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96, 85–94.
What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis.CrossRef |

Calheiros, D. F. (2003). Influência do pulso de inundação na composição isotópica (δ13C e δ15N) das fontes primárias de energia na planície de inundação do rio Paraguai (Pantanal – MS). Ph.D. Thesis, Universidade de São Paulo, Brazil.

Caraco, N. F., and Cole, J. J. (2004). When terrestrial organic matter is sent down the river: the importance of allochthonous carbon inputs to the metabolism of lakes and rivers. In ‘Food Webs at the Landscape Level’. (Eds G. A. Polis, M. E. Power and G. R. Huxel.) pp. 301–361. (University of Chicago Press: Chicago, IL.)

Carini, S., Bano, N., LeCleir, G., and Joye, S. B. (2005). Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environmental Microbiology 7, 1127–1138.
Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA).CrossRef | 1:CAS:528:DC%2BD2MXpt1CisrY%3D&md5=bedaaed9de200502c0bcf6855ea15075CAS | 16011750PubMed |

Carpenter, S. R., Cole, J. J., Pace, M. L., Van de Bogert, M., Bade, D. L., Bastviken, D., Gille, C. M., Hodgson, J. R., Kitchell, J. F., and Kritzberg, E. M. (2005). Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86, 2737–2750.
Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes.CrossRef |

Cazzanelli, M., Forsström, L., Rautio, M., Michelsen, A., and Christoffersen, K. S. (2012). Benthic resources are the key to Daphnia middendorffiana survival in a high arctic pond. Freshwater Biology 57, 541–551.
Benthic resources are the key to Daphnia middendorffiana survival in a high arctic pond.CrossRef | 1:CAS:528:DC%2BC38XjsVCqurs%3D&md5=c86c392e562bc3ee783e1f64c49deef0CAS |

Cole, J. J., Carpenter, S. R., Kitchell, J., Pace, M. L., Solomon, C. T., and Weidel, B. (2011). Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen and hydrogen. Proceedings of the National Academy of Sciences of the United States of America 108, 1975–1980.
Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen and hydrogen.CrossRef | 1:CAS:528:DC%2BC3MXhslyjtr4%3D&md5=366a61a138d6c0d7bfe5d8e3b3eec7c0CAS | 21245299PubMed |

del Giorgio, P. A., and France, R. L. (1996). Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnology and Oceanography 41, 359–365.
Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C.CrossRef |

DeNiro, M., and Epstein, S. (1977). Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197, 261–263.
Mechanism of carbon isotope fractionation associated with lipid synthesis.CrossRef | 1:CAS:528:DyaE2sXkvVWjsLo%3D&md5=1df536cd90ee8492041c41ea861ecd67CAS | 327543PubMed |

Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters 7, 509–520.
Bayesian inference in ecology.CrossRef |

Finlay, J. C., and Kendall, C. (2007). Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In ‘Stable Isotopes in Ecology and Environmental Science’. (Eds R. Michener and K. Lajtha.) pp. 283–333. (Blackwell Publishing: Oxford, UK.)

France, R. L. (1995). Differentiation between pelagic and littoral food webs in lakes using carbon isotopes. Limnology and Oceanography 40, 1310–1313.
Differentiation between pelagic and littoral food webs in lakes using carbon isotopes.CrossRef |

Grey, J. (2016). The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond. Frontiers in Ecology and Evolution 4, 8.
The incredible lightness of being methane-fuelled: stable isotopes reveal alternative energy pathways in aquatic ecosystems and beyond.CrossRef |

Grey, J., Jones, R. I., and Sleep, D. (2000). Stable isotopes analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123, 232–240.
Stable isotopes analysis of the origins of zooplankton carbon in lakes of differing trophic state.CrossRef |

Grey, J., Jones, R. I., and Sleep, D. (2001). Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography 46, 505–513.
Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis.CrossRef |

Hansen, B., Bjørnsen, P. K., and Hansen, P. J. (1994). The size ratio between planktonic predators and their prey. Limnology and Oceanography 39, 395–403.
The size ratio between planktonic predators and their prey.CrossRef |

Havens, K. E., Bull, L. A., Warren, G. L., Crisman, T. L., Philips, E. J., and Smith, J. P. (1996). Food web structure in a subtropical lake ecosystem. Oikos 75, 20–32.
Food web structure in a subtropical lake ecosystem.CrossRef |

Hopkins, J. B., and Ferguson, J. M. (2012). Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS One 7, e28478.
Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model.CrossRef | 1:CAS:528:DC%2BC38XnsFalsw%3D%3D&md5=77d29f66ce37b6009fad1c0c43fa7303CAS | 22235246PubMed |

Jones, R. I., and Grey, J. (2011). Biogenic methane in freshwater food webs. Freshwater Biology 56, 213–229.
Biogenic methane in freshwater food webs.CrossRef | 1:CAS:528:DC%2BC3MXisVCls7g%3D&md5=fe6fb746ec791a09aa04cd2147018c44CAS |

Kankaala, P., Taipale, S., Grey, J., Sonninen, E., Arvola, L., and Jones, R. I. (2006). Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes. Limnology and Oceanography 51, 2821–2827.
Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes.CrossRef | 1:CAS:528:DC%2BD28XhtlWltbrF&md5=b815a6aa897b8a2948d5d4cf51057dddCAS |

Karlsson, J., Bergström, A.-K., Byström, P., Gudasz, C., Rodríguez, P., and Hein, C. (2015). Terrestrial organic matter input suppresses biomass production in lake ecosystems. Ecology 96, 2870–2876.
Terrestrial organic matter input suppresses biomass production in lake ecosystems.CrossRef | 27070007PubMed |

Kling, G. W., Fry, B., and O’brien, W. J. (1992). Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology 73, 561–566.
Stable isotopes and planktonic trophic structure in Arctic lakes.CrossRef |

Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., Matich, P., Rosenblatt, A. E., Vaudo, J. J., Yeager, L. A., Post, D. M., and Bearhop, S. (2012). Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society 87, 545–562.
Applying stable isotopes to examine food-web structure: an overview of analytical tools.CrossRef | 22051097PubMed |

Maia-Barbosa, P. M., Menendez, R. M., Pujoni, D. G. F., Brito, S. L., Aoki, A., and Barbosa, F. A. R. (2014). Zooplankton (Copepoda, Rotifera, Cladocera and Protozoa: Amoeba Testacea) from natural lakes of the middle Rio Doce basin, Minas Gerais, Brazil. Biota Neotropica 14, 1–20.
Zooplankton (Copepoda, Rotifera, Cladocera and Protozoa: Amoeba Testacea) from natural lakes of the middle Rio Doce basin, Minas Gerais, Brazil.CrossRef |

McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390.
Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur.CrossRef | 1:CAS:528:DC%2BD3sXmsl2qurg%3D&md5=cda564d4e95e5f058bd46e6a7ea718bdCAS |

Modéran, J., David, V., Bouvais, P., Richard, P., and Fichet, D. (2012). Organic matter exploitation in a highly turbid environment: planktonic food web in the Charente estuary, France. Estuarine, Coastal and Shelf Science 98, 126–137.
Organic matter exploitation in a highly turbid environment: planktonic food web in the Charente estuary, France.CrossRef |

Moore, M. V. (1988). Differential use of food resources by the instars of Chaoborus punctipennis. Freshwater Biology 19, 249–268.
Differential use of food resources by the instars of Chaoborus punctipennis.CrossRef |

Moore, M. V., Yan, N. D., and Pawson, T. (1994). Omnivory of the larval phantom midge (Chaoborus spp.) and its potential significance for freshwater planktonic food webs. Canadian Journal of Zoology 72, 2055–2065.
Omnivory of the larval phantom midge (Chaoborus spp.) and its potential significance for freshwater planktonic food webs.CrossRef |

Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Van de Bogert, M. C., Bade, D. L., Kritzberg, E. S., and Bastviken, D. (2004). Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427, 240–243.
Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs.CrossRef | 1:CAS:528:DC%2BD2cXjtFKjtA%3D%3D&md5=a5213214f6768d2ef7707664bca0a823CAS | 14724637PubMed |

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One 5, e9672.
Source partitioning using stable isotopes: coping with too much variation.CrossRef | 20300637PubMed |

Pel, R., Hoogveld, H., and Floris, V. (2003). Using the hidden isotopic heterogeneity in phyto-and zooplankton to unmask disparity in trophic carbon transfer. Limnology and Oceanography 48, 2200–2207.
Using the hidden isotopic heterogeneity in phyto-and zooplankton to unmask disparity in trophic carbon transfer.CrossRef | 1:CAS:528:DC%2BD3sXpvFagsbk%3D&md5=36b85144aced5f5c97216f5029426bcbCAS |

Phillips, D. L., and Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125.
Incorporating concentration dependence in stable isotope mixing models.CrossRef |

Pivari, M. O. D. (2011). Inventário e sucessão das plantas aquáticas do sistema lacustre do vale do Rio Doce, Minas Gerais, Brasil. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Polis, G. A., and Strong, D. R. (1996). Food web complexity and community dynamics. American Naturalist 147, 813–846.
Food web complexity and community dynamics.CrossRef |

Polis, G. A., Holt, R. D., Menge, B. A., and Winemiller, K. O. (1995). Time, space, and life history: influences on food webs. In ‘Food Webs: Integration of Patterns and Dynamics’. (Eds G. A. Polis and K. O. Winemiller.) pp. 435–460. (Chapman and Hall: New York.)

Polis, G. A., Anderson, W. B., and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28, 289–316.
Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs.CrossRef |

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718.
Using stable isotopes to estimate trophic position: models, methods, and assumptions.CrossRef |

Rautio, M., Mariash, H., and Forsström, L. (2011). Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake. Limnology and Oceanography 56, 1513–1524.
Seasonal shifts between autochthonous and allochthonous carbon contributions to zooplankton diets in a subarctic lake.CrossRef | 1:CAS:528:DC%2BC3MXhtVCrurvE&md5=13928b2e630d8eb3892cafc13c6c1b5fCAS |

Reis, P. C. J., and Barbosa, F. A. R. (2014). Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake. Brazilian Journal of Biology 74, S113–S119.
Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.CrossRef | 1:STN:280:DC%2BC2Mrgt1KisQ%3D%3D&md5=70f2bb55ef859dd95e3a963e03eec561CAS |

Saijo, Y., and Tundisi, J. G. (1985). Limnological studies in central Brazil Rio Doce Valley Lakes and Pantanal wetland. 1st report. Water Research Institute, Nagoya University, Nagoya, Japan.

Salino, A., Stehmann, J. R., Sposito, T. C., and Carvalho, F. A. (2002) Botanical composition and phytosociology of an area of Atlantic Forest in the southeast of Minas Gerais, Brazil. Technical report of the LTER Program at the Middle Rio Doce Valley/UFMG., Belo Horizonte, Brazil.

Schindler, D. E., and Lubetkin, S. C. (2004). Using stable isotopes to quantify material transport in food webs. In ‘Food Webs at the Landscape Level’. (Eds G. A. Polis, M. E. Power and G. R. Huxel.) pp. 25–42. (University of Chicago Press: Chicago, IL.)

Schindler, D. E., and Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos 98, 177–189.
Habitat coupling in lake ecosystems.CrossRef |

Schindler, D. E., Carpenter, S. R., Cottingham, K. L., He, X., Hodgson, J. R., Kitchell, J. F., and Soranno, P. A. (1996). Food web structure and littoral zone coupling to pelagic trophic cascades. In ‘Food Webs: Integration of Patterns and Dynamics’. (Eds G. A. Polis and K. O. Winemiller.) pp. 96–105. (Chapman and Hall: New York.)

Solomon, C. T., Carpenter, S. R., Clayton, M. K., Cole, J. J., Coloso, J. J., Pace, M. L., Vander Zanden, M. J., and Weidel, B. C. (2011). Terrestrial, benthic and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92, 1115–1125.
Terrestrial, benthic and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model.CrossRef | 21661572PubMed |

Straškraba, M. (1964). Preliminary results of a new method for the quantitative sorting of freshwater net plankton into main groups. Limnology and Oceanography 9, 268–270.
Preliminary results of a new method for the quantitative sorting of freshwater net plankton into main groups.CrossRef |

Taipale, S., Kankaala, P., Tiirola, M., and Jones, R. I. (2008). Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89, 463–474.
Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet.CrossRef | 18409435PubMed |

Taipale, S., Kankaala, P., Hämäläinen, H., and Jones, R. I. (2009). Seasonal shifts in the diet of lake zooplankton revealed by phospholipid fatty acid analysis. Freshwater Biology 54, 90–104.
Seasonal shifts in the diet of lake zooplankton revealed by phospholipid fatty acid analysis.CrossRef | 1:CAS:528:DC%2BD1MXisVCrt7g%3D&md5=975b498473e1012591fdf3e7eb26496cCAS |

Tundisi, J. G., and Saijo, Y. (1997). ‘Limnological Studies on the Rio Doce Valley Lakes, Brazil.’ (Brazilian Academy of Sciences: São Carlos, Brazil.)

Vadeboncoeur, Y., Vander Zanden, M. J., and Lodge, D. M. (2002). Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52, 44–52.
Putting the lake back together: reintegrating benthic pathways into lake food web models.CrossRef |

Vadeboncoeur, Y., Peterson, G., Vander Zanden, M. J., and Kalff, J. (2008). Benthic algal production across lake size gradients: interaction among morphometry, nutrients, and light. Ecology 89, 2542–2552.
Benthic algal production across lake size gradients: interaction among morphometry, nutrients, and light.CrossRef | 18831175PubMed |

Vander Zanden, M. J., and Rasmussen, J. B. (1999). Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80, 1395–1404.
Primary consumer δ13C and δ15N and the trophic position of aquatic consumers.CrossRef |

Vander Zanden, M. J., Cabana, G., and Rasmussen, J. B. (1997). Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54, 1142–1158.
Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data.CrossRef |

Vander Zanden, M. J., Vadeboncoeur, Y., and Chandra, S. (2011). Fish reliance on littoral–benthic resources and the distribution of primary production in lakes. Ecosystems 14, 894–903.
Fish reliance on littoral–benthic resources and the distribution of primary production in lakes.CrossRef |

Vuorio, K., Meili, M., and Sarvala, J. (2006). Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biology 51, 807–822.
Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton.CrossRef | 1:CAS:528:DC%2BD28XlsFWqt70%3D&md5=b01193f9b8da1b6598203a44a89c4f6aCAS |

Zigah, P. K., Minor, E. C., Werne, J. P., and Leigh McCallister, S. (2012). An isotopic (Δ14C, δ13C, and δ15N) investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems. Biogeosciences 9, 3663–3678.
An isotopic (Δ14C, δ13C, and δ15N) investigation of the composition of particulate organic matter and zooplankton food sources in Lake Superior and across a size-gradient of aquatic systems.CrossRef | 1:CAS:528:DC%2BC38XhvVymsrzO&md5=70c76e45cada4d67a27148e9353cdff3CAS |



Rent Article (via Deepdyve) Export Citation

View Altmetrics